Innovations in Spirometry
EnPRO 357

background
product
technology
customers
competition
business plan

ENPRO 357
Innovations in Spirometry

Spring 2002
30 million Americans currently suffer from lung disease

Lung disease is #3 cause of death in the US
A spirometer is a medical device used to assess lung function

- Measures velocity of air flow
- Relates velocity to clinically relevant lung parameters
Currently available diagnostic spirometers:

- Expensive capital investment ($1500 – 3000+)
- Require computer for operation
- Require daily calibration with bulky equipment
- Require separate purchase of mouthpieces ($2+ per patient per test)
The IIT spirometer exceeds the capabilities of traditional spirometers:

- Lightweight and user-friendly
- Meets or exceeds all ATS standards for spirometry
The IIT spirometer exceeds the capabilities of traditional spirometers:

- Measures and stores diagnostically relevant information
- Measures $\text{FEV}_{1.0}$ and Peak Flow
The IIT spirometer exceeds the capabilities of traditional spirometers:

- Inexpensive
- Easy cleaning and sterilization
- No moving parts design provides durability
fluidic oscillator

Inlet

Oscillatory Chamber

Outlet

Nozzle

Obstacle

background
product
technology
customers
competition
business plan

Spring 2002
The IIT spirometer proven for operation under steady-state flow conditions

To proceed to final development:

– Must be proven for operation under unsteady flow conditions
Experimental approach to prove unsteady flow case

- Design and build a lung function simulator
experimental approach
Dynamic Flow Experimental Data

Pressure vs. Time

<table>
<thead>
<tr>
<th>Testing up to 8L</th>
<th>ATS Standards (Diagnostic)</th>
<th>IIT Spirometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV\textsubscript{t}</td>
<td>±3% of reading</td>
<td>±0.6%</td>
</tr>
<tr>
<td>FVC</td>
<td>±3% of reading</td>
<td>±0.6%</td>
</tr>
<tr>
<td>Precision</td>
<td>±3% of reading</td>
<td>±0.95%</td>
</tr>
<tr>
<td>Resolution*</td>
<td>0.05L</td>
<td>0.045L</td>
</tr>
</tbody>
</table>

*Monitoring standards
Primary marketing target:

Physicians who use spirometers

~15,000 pulmonologists

~7,000 allergists
Secondary marketing targets: physicians who do not currently use spirometry regularly

- will benefit fiscally and clinically

- 8-9,000 spirometry tests performed per year at The University of Chicago Hospitals alone
Surveys and Interviews:
- Physician
 - To gain better understanding of the market
 - To seek advice on enhancing the spirometer functions.
- Patient-Consumer
 - To identify potential customer types
 - To define market supportable price range
 - To discover ways to improve on current products.
Spirometry market is crowded

Many companies selling similar products:

- Based on pneumotachigraph technology
- Periodic calibration required
Many companies selling similar products:

- Disposable pieces required
- PC dependent for operation

We can compete on the basis of:

- No disposable pieces
We can compete on the basis of:

- No need for calibration
- PC independent
- Increased accuracy
- Price
Establish independent company to bring spirometer to market

Initial business model will follow SBIR plan
Investments in a series of 6-9 month phases

- Phase I: Evaluation ($100,000)
 - Solve technical issues
 - Complete spirometer development
 - Define manufacturing protocol
- Goal: Increase value of business 2-3 times
- Phase II: Testing and Market
 - Clinical trials
 - Initial product sales
 - Build client list
- Goal: Establish $1-2 million business
Formal consulting relationships being formed with prominent physicians at:

- National Jewish Research and Medical Center
- The University of Chicago Hospitals
Innovations in Spirometry
EnPRO 357

Humanitarian Benefits

Capitalist Benefits
Existing Market
Ease of Use
Retail Price
Low Risk

Return on Investment!
The Team

Reji Attupurath
Undergraduate, Molecular Biochemistry, Biophysics

Steven Chen
Undergraduate, Molecular Biochemistry, Biophysics

Albert Choie
Undergraduate, Molecular Biochemistry, Biophysics

Bhargava Gannavarapu
Undergraduate, Molecular Biochemistry, Biophysics

Zachary Goossens
Undergraduate, Aerospace Engineering

Jacob Huske
Undergraduate, Electrical Engineering

Senthil Jayarajan
Undergraduate, Computer Science

Adit Panchal
Undergraduate, Computer Engineering

Ankur Patel
Undergraduate, Computer Science

Jooman Shim
Undergraduate, Molecular Biochemistry, Biophysics

Michael Shye
Undergraduate, Molecular Biochemistry, Biophysics

Nicole Wilson
Ph.D. Candidate, Biomedical Engineering

Kevin Meade
Professor, Mechanical, Materials and Aerospace Engineering

David Williams
Professor, Mechanical, Materials and Aerospace Engineering