Introduction

Presenter: William Guess
IPRO 326 ORGANIZATION

- ADVISOR Simulations
- Jeep Liberty Technical Report
- Future Truck Competition
- Garage/Mechanical Works
- Hybrid Drivetrain Design
- Ultra-Capacitor Research & Design
MAIN GOALS

• Determine the optimal power distribution between the internal combustion and electric motors
• Develop a hybrid drive train based on the Jeep Liberty
• Lay simulation and design groundwork for the Challenge X competition sponsored by General Motors
Organizing Garage/Mechanical Works Team

Betsy Raju
Bill Guess
Dave Bartik
Grace Nijm
Matt Ayersman
Raul Gonzalez
Ryan Long
Goals

• Organize the IIT automotive garage
• Become familiar with the mechanical aspects of a hybrid vehicle
• Act as a resource for other team members
• Acquire an IPRO 326 project vehicle
Accomplishments

- Successfully reserved and organized a portion of the garage for IPRO 326
- Gained access to a Honda Insight and investigated certain aspects of its mechanical design
- Shared our knowledge and resources with other team members
- Acquired a 1990 GMC Safari van to serve as the official IPRO 326 project vehicle
Introduction to Hybrid Electric Vehicles

Presenter: Pavel Reytikh
What is a HEV?

- Hybrid electric vehicles (HEVs) combine the internal combustion engine with the electric motor.
- This results in an increased fuel economy when compared to conventional vehicles.
- Also offers the extended range and rapid refuelling that consumers expect from a normal vehicle, with most of the energy and environmental benefits of an electric vehicle.
- Can be used in a wide range of applications, from personal transportation to commercial hauling.
- 2 types of hybrids: series and parallel
ICE charges batteries or powers electric motor which drives the transmission
Parallel HEV Configuration

ICE and electric motor can both drive the transmission.
Electrical Power System

- HEVs contain a small electric motor
 - Acts as a generator as well
 - Uses battery energy to accelerate car
 - Uses generator properties to recharge batteries
- HEVs contain batteries
 - Used to power the electric motor
 - Recharged each time the brakes are pressed
- The electric component of the car takes over when driving in slow traffic or when you stop frequently
 - The electric motor can be used with the gas engine when accelerating the car
Gasoline Power System

• HEVs have the same internal combustion engine as a regular car
 - Slightly smaller – it isn’t doing as much work as in a regular car because the electric motor is able to take over or help in certain circumstances (i.e. accelerating or climbing a hill)
 - More efficient because of the size

Hybrids have a transmission that performs the same job as in non-Hybrid cars
Jeep Liberty Sport

- 2.4 L, 150hp engine
- Rear-wheel drive
- 19/24 mpg (city/highway, 5-spd)
Drive Train Design Team

Presenter: John Brandt

Team Members:
Allan Howard
Pavel Reytikh
Sanjaka Wirasingah
Series Hybrid

- 50-70 kW
- ICE
- ISA
- Drive Controller
- Charge Controller
- Battery
- 50-70 kW
- 50-70 kW
- 50-70 kW
Series Hybrid Pros/Cons

Pro
- Most Efficient Option
- Offers Braking Regeneration
- Fairly Compact Design
- Constant RPMs on ICE

Con
- Complicated System
- Requires near complete overhaul
- Energy changes drop efficiency
Hydraulic Baffle Turbine System

Baffle Turbine Layout

- Drive Turbine
- Gen. Turbine
- ICE
- Baffle to Direct hydraulic fluid
- Output up to Maximum RPM of ICE at ideal speed
- Generator
Baffle Turbine Pros/Cons

- Allows constant RPM
- Parts Readily Available
- Fairly Simple System
- Pretty Sweet

- Heavy
- Inefficient
- Never been done before
- No regenerative braking
Incomplete Parallel Hybrid

[Diagram showing the components of an incomplete parallel hybrid system, including Regen./Boost, ICE, and ISA.]
Incomplete Hybrid Pros/Cons

- Can offer partial regenerative braking (front only)
- Simplest plan
- Fewer modifications required
- Relatively lightweight

- INEFFICIENT
- No constant RPMs
- Power for battery recharge transferred through the road could cause excessive tire wear
- Possibly not powerful enough for a 4x4
Best Hybridization Factor

Presenter: Paul Reinhard
Team Member: Pavel Reytikh
Constant Vehicle Conditions

- **Engine:** Saturn 1.9L SOHC scaled to 112kW (FC_SI63_emis); peak efficiency 0.34
- **Batteries:** NiMH (ESS_NIMH93); 21 modules for $V_{\text{nom}} = 299V$
- **Parallel configuration**
Constant Variable Justification

• 299V nominal voltage chosen due to compliance with most rigorous test available (HL07)
• NiMH 93 batteries most powerful available to simulation program
• Saturn engine comparable; emissions data available in simulations
Variable Vehicle Conditions

- Motor: MC_AC75 varied incrementally from 0 (no motor) to 100kW
Drive Cycles

- All tests to be completed using the UDDS drive cycle in ADVISOR (city driving)
What is ADVISOR?

• ADVISOR is an ADVANCED VEHICLE SIMULATOR that simulates the performance of hybrid electric, conventional, electric, and fuel cell vehicles.

• Calculates the fuel economy, emissions released, acceleration times, and much more for a given drive cycle.

• Created the U.S. Department of Energy's (DOE) Office of Transportation Technologies' (OTT) Hybrid Vehicle Program
HF-Results

- Tests run in 10 kW increments
- SoC varied from approximately 0.7 (initial) to 0.66 (final) for all tests

<table>
<thead>
<tr>
<th>Motor (kW)</th>
<th>mpg</th>
<th>0-60</th>
<th>1/4 mi</th>
<th>Grade</th>
<th>HC</th>
<th>CO</th>
<th>NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.1</td>
<td>9.1</td>
<td>17.2</td>
<td>22.5</td>
<td>0.826</td>
<td>3.614</td>
<td>0.331</td>
</tr>
<tr>
<td>10</td>
<td>26.7</td>
<td>9.3</td>
<td>17.2</td>
<td>21.6</td>
<td>0.826</td>
<td>4.007</td>
<td>0.357</td>
</tr>
<tr>
<td>20</td>
<td>26.7</td>
<td>8.5</td>
<td>16.7</td>
<td>25.1</td>
<td>0.826</td>
<td>4.009</td>
<td>0.358</td>
</tr>
<tr>
<td>30</td>
<td>26.6</td>
<td>8.1</td>
<td>16.3</td>
<td>28.4</td>
<td>0.827</td>
<td>4.012</td>
<td>0.360</td>
</tr>
<tr>
<td>40</td>
<td>26.5</td>
<td>8.0</td>
<td>16.3</td>
<td>28.7</td>
<td>0.829</td>
<td>4.016</td>
<td>0.362</td>
</tr>
<tr>
<td>50</td>
<td>26.3</td>
<td>8.1</td>
<td>16.3</td>
<td>28.6</td>
<td>0.830</td>
<td>4.020</td>
<td>0.365</td>
</tr>
<tr>
<td>60</td>
<td>26.1</td>
<td>8.1</td>
<td>16.3</td>
<td>28.6</td>
<td>0.831</td>
<td>4.024</td>
<td>0.368</td>
</tr>
<tr>
<td>70</td>
<td>25.9</td>
<td>8.1</td>
<td>16.4</td>
<td>28.7</td>
<td>0.833</td>
<td>4.029</td>
<td>0.371</td>
</tr>
<tr>
<td>80</td>
<td>25.7</td>
<td>8.1</td>
<td>16.4</td>
<td>28.8</td>
<td>0.835</td>
<td>4.035</td>
<td>0.374</td>
</tr>
<tr>
<td>90</td>
<td>25.5</td>
<td>8.1</td>
<td>16.4</td>
<td>28.9</td>
<td>0.836</td>
<td>4.040</td>
<td>0.377</td>
</tr>
<tr>
<td>100</td>
<td>25.3</td>
<td>8.1</td>
<td>16.4</td>
<td>29.0</td>
<td>0.838</td>
<td>4.045</td>
<td>0.380</td>
</tr>
</tbody>
</table>

Emissions (grams/mi)
HF-Results

MPG vs. Motor Power

MPG / % Grade

Power (kW)
HF-Results

0 - 60 Time vs. Power

Power (kW)

0 - 60 (s)
HF-Conclusions

- Two cases:
 - Highest Fuel Economy:
 - Use 20kW motor; Hybridization Factor is 0.152
 - Gives 26.5% increase in fuel economy (21.1mpg to 26.7)
 - 6.6% decrease in 0-60 time (9.1s to 8.5s)
 - 11.6% increase in grade-ability (22.5% to 25.1%)
 - Performance:
 - Use 40kW motor; Hybridization Factor is 0.263
 - Gives 25.6% increase in fuel economy (21.1mpg to 26.5mpg)
 - 12.1% decrease in 0-60 time (9.1s to 8.0s)
 - 27.6% increase in grade-ability (22.5% to 28.7%)
• Increasing from 20kW to 40kW yields modest increase in performance
• Minor losses to fuel economy with increase in motor size
• Determining variable for hybridization factor would be cost of 20kW setup compared to 40kW setup
The Future Truck Competition

Presented by: Bhuan Agrawal
Team Member: Kavin Ammigan
• 5-year engineering competition to address growing energy-related and environmental concerns

http://www.futuretruck.org
Future Truck Team Objectives

• Examine past team designs
• Offer advice and input to Drivetrain Design Team
Our Recommendation

• Split-parallel hybrid design
• Maximum flexibility
• Minimum modification to the vehicle
Current Work

- Reference paper
- Will serve as a valuable learning resource for future hybrid work (Challenge X)
- To be presented at SAE World Congress 2005
Ultra-Capacitors

Presenter: Jesse Park
Team Member: Betsy Raju
Advantages of Ultra-Capacitors as a Component of the HEV Energy Storage Model

- Increased Power Delivery
- Increases the Life of the Battery
- Cheap and Efficient
- Overall Cost Reduction of the Energy Storage System
Energy Storage Model

- **DC/DC Converter**
 - Power Requested from Power Bus
 - SOC / Power Available
 - Max Limit of Converter
 - Power Available
 - Power Requested

- **Battery**
 - Power Delivered from Battery

- **Ultra-capacitor**
 - Power Delivered from Ultra capacitor
 - SOC / Power Available

- **Σ**
 - Power Delivered to Power Bus

- **Σ**
 - Power Delivered to Power Bus
Simulation with 10 year cost: Effect of Ultra-Capacitors on the Energy Storage System

<table>
<thead>
<tr>
<th>NiMH Battery Units</th>
<th>Ultra-Capacitor Units</th>
<th>Motor (kW)</th>
<th>UDDS (mpg)</th>
<th>Acceleration (s) 0-60</th>
<th>Acceleration (s) 40-60</th>
<th>Acceleration (s) 0-85</th>
<th>Max Speed (mph)</th>
<th>Grade (%)</th>
<th>Cost $</th>
<th>% saved</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>0</td>
<td>10</td>
<td>23.9</td>
<td>9.9</td>
<td>4.4</td>
<td>18.9</td>
<td>113.1</td>
<td>18.5</td>
<td>2100</td>
<td>N/A</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>10</td>
<td>23.0</td>
<td>9.3</td>
<td>4.2</td>
<td>18.4</td>
<td>113.0</td>
<td>21.0</td>
<td>9150</td>
<td>56.4</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>20</td>
<td>23.9</td>
<td>8.8</td>
<td>3.8</td>
<td>16.6</td>
<td>121.4</td>
<td>18.4</td>
<td>2100</td>
<td>N/A</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>20</td>
<td>23.0</td>
<td>8.8</td>
<td>3.9</td>
<td>17.5</td>
<td>113.0</td>
<td>20.8</td>
<td>9900</td>
<td>52.9</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>30</td>
<td>23.8</td>
<td>8.2</td>
<td>3.4</td>
<td>15.0</td>
<td>126.9</td>
<td>18.3</td>
<td>2100</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>45</td>
<td>30</td>
<td>23.0</td>
<td>8.2</td>
<td>3.4</td>
<td>16.0</td>
<td>116.6</td>
<td>20.4</td>
<td>11350</td>
<td>46.0</td>
</tr>
</tbody>
</table>
Conclusion

Presenter: Ryan Long
Accomplishments

• Acquisition of test vehicle for hybrid drivetrain designs
• Advisor simulations determining best hybridization factors and engine size
• Research of Future Truck Competition designs in order to determine feasibility of various design options
• Research of Jeep Liberty in order to assess options in hybridizing small SUVs
• Research on Honda Insight
• Preliminary design of hybrid drivetrain
Future Plans

- Use research from this semester in conjunction with research from previous semesters in order to compete in Challenge-X sponsored by General Motors
• Questions?

• Refer to Final Progress Report or check us out at:

http://www.iit.edu/~ipro326