Know IIT Ales strives to provide students with better choices for their money. The approach is to micro-brew beer at the university and then offer the product at The BOG through an agreement with campus food service. By brewing small batches on campus, the Know IIT Ales will be able to provide beer in a timely fashion as needed and also adapt to the preferences of students by brewing a wide selection of beers.

Altbier was produced in three batches. The first batch had yeast that required fermentation at 50 °F. The second batch had more hops than the former and used as a control fermenting at room temperature. This was to observe how much faster the fermentation process would be along with comparing taste and alcohol content. The third batch also consisted of the same recipe but with a few minor changes, including using different yeast that fermented at room temperature. This was used to analyze how yeast and temperature changes the taste and quality of the beer.

Recipes

BATCH 1 & 2
Recipes St. Udleys Beer
Ingredients:
- 6-lbs plain dark malt (15)
- 1-lbs German Vienna grain
- 1-lbs Belgian caramunich (cara 45) grain
- 1-lbs caramel 40 L grain
- 1-oz perle (90)
- 0.5-oz parle (40)
- 0.5 oz parle (15)
- wyeast 2565 luxus yeast
- Irish moss (1-lb)

BATCH 3
Recipes St. Udleys Beer
Ingredients:
- 6-Lbs Munton’s Plain dark malt extract color EBC 60
- 1-lb German Vienna grain
- 1-lbs Carmel 40 grain
- 2-lbs Belgian cara 45 grain
- 1-oz Tetnag hop
- 1-oz perle (90) hops
- 0.5-oz parle (45) hops
- 6-lbs dark malt
- 1-dip Irish moss
- Wyeast American Ale XL yeast

Heat Transfer
Intro: Heated wort was cooled via a copper cooling coil that circulated cold water (CW).

Goal: Find total energy absorbed via CW and total energy removed from wort.

\[
\dot{Q}_{\text{wort}} = m c_v \frac{dT}{dt} \\
\dot{Q}_{\text{CW}} = \dot{m} C_p (T_{\text{out}}(t) - T_m)
\]

\[
\int_{10}^{330} \dot{Q}_{\text{wort}} dt = \text{total energy removed from wort} = -5108.5 \text{ kJ} \\
\int_{10}^{330} \dot{Q}_{\text{CW}} dt = \text{total energy absorbed via CW} = +4847.4 \text{ kJ}
\]

\[
5108.5 \text{ kJ} - 4847.4 \text{ kJ} = 261.1 \text{ kJ}
\]

Acknowledgments
Dr. Vijay K. Ramani, Chris Arges, Paul Adamczyk, Kolade Adebowale, Faisal Alnazi, Alhassan Albdalmohsen, Sam Amelio, Bonnie Au, Minsung Choi, Andre Colmenares, Keller George, Whitney Horn, Amjed Husen, Tobiah Isbell, Graham Johnson, Michael Krolikiewicz, Ryan Kyle, Jordan Laremas, Stephanie Lucas, Kamaldeen Olorunoje, Heta Panchal, Andrew Raddatz, Raksha Rajagopalan, Ricardo Rodriguez, Nicholas Shattuck, Jaya Singh, Sami Somo