Table of Contents

Project Description .. 05
Final Masters Project ... 06
Masters Project Preparation 62
Case Studies .. 72
Bibliography ... 85
Like many cities, post-industrialization had generated large number of blighted and underutilized areas within city of São Paulo. Particularly along the central areas, these residual spaces are wastelands disarticulated from the urban fabric creating barriers which prevent an integrated and more harmonious city development. In addition, the city’s lack of green areas and its issues involving water infrastructure - urban drainage, and floods - lead the city into chaos during the wet season.

This project aims to develop a new design strategy to redevelop the Pari yards and reclaim the adjacent Tamanuatu River by turning it into an operative landscape. A holistic system to harvest, clean and reuse the abundant summer rainfall was created in order to enable a highly sustainable urban redevelopment.
Sao Paulo Vs. Chicago

City Area

Sao Paulo Diagram

Chicago Diagram

Aerial View

Permeable Area

Rain Water Fall

Facts

Benchmark Scale

0.9 acres/1000 inh

4.2 acres/1000 inh

Chicago Diagram

Sao Paulo Diagram

Rain Water Fall

Permeable Area

0.9 acres/1000 inh

4.2 acres/1000 inh
Barrier

Rail Edge

Brazil’s Territory

State of São Paulo

São Paulo’s Metropolitan Area

City of São Paulo

Physical Facts

Deindustrialization generated the emptiness of entire urban areas. The metropolitan territory became, suddenly, depository of enormous transformations and urban abandonment and wastelands had become particularly evident on the contemporary urban fabric: underutilized industrial zones, non-used industrial warehouses and deposits, abandoned buildings on the inner city and deactivated rail yards[wastelands, brownfields and terrain vague].

*Essay “Terrain Vague” - Ignasi de Sola-Morales

Brazil’s Territory State of São Paulo

Pari Yard in the 1950’. Map from 1930.

Physical Facts

* Diagrams source: author

0 1 2Km

Rail Edge
Opportunity

Unarticulated Land

- Site - Pari Yard
- Areas of Industry Concentration
- Areas of Rail Maneuver and Yards
- Rail Line
- Tiete River
- Tamanduatei River
- São Paulo Central Area Boundary
- Central Neighborhoods' Boundaries
- Real Estate Developments
- Unarticulated Land

* Images source: Google Earth
* Diagram source: Book - São Paulo Metrópole
TREND

REAL ESTATE DEVELOPMENTS

Physical Facts

High rise residential developments.

Real Estate Developments

Corporate development.
On the verge of summer, when pluviometric rates in São Paulo are at their highest, the chronic problem of flooding resumes. With the intense process of disorderly urbanization, the soil has become excessively impermeable. The transformation and occupation of São Paulo Basin riverbanks and pluvial plains, which used to control water flows, just worsen the problem.
RESULT

Floods

The entire population is hit by the flooding. Underprivileged populations who live close to water flows in historically depreciated areas are directly affected in their own dwellings. The risk situation of these populations represents for every public administration a reason for concern, which might be either of lower or higher level, according to their social commitment. This issue has never been tackled in an effective manner, and suffers with continual government changes and discontinuity.
One of the solutions proposed for city flooding is the construction of a set of large reservoirs, piscinões, to retain and control rain water, holding it back from city rivers and streams, reducing any overflow. In short, the piscinão replaces the original regulating function of the fluvial plains, now occupied and fully impermeable.
What Can be Done?

SPECULATION
How Many
Gallons of water do you need to produce a pound of?

- Tomatoes: 49
- Beans: 23
- Potatoes: 25
- Eggplants: 24
- Peppers: 26
- Onions: 21
- Lettuce: 23
- Broccoli: 22
- Carrots: 33

Source: Food and Agriculture Organization of the United Nations

How Many
Pounds of food can be produced per acre?

Speculation

35,000 pounds of food / acre
The Municipal Market of São Paulo receives more than 600,000 visitors per month and 3,000 employees ready to serve them. In the wholesale section, about 300 tons of food are bought every day by free market traders, greengrocers, and renowned restaurateurs in the country.
Existing Accessibility

Difficulty faced by pedestrian when attempting to walk through Estado Avenue.

- Metro Station - Underground rail system.
- Metro Lines: Line D1 - North/South, Line D3 - East/West
- CPTM Lines
- CPTM Station - Suburban rail system.
- Dom Pedro II - Bus Terminal
-Estado Ave. - Very high traffic artery.
-Pari Yard.
Existing

Pari Yard Current Condition

View from Estado Ave and São Caetano Street

The site currently is been under used as a bus parking lot.

Former Rail Yard Office Building

A view from the yard looking at the rail

Arch 593 : Masters project : Spring 2011 : Maria Fernanda Lussich Garese

FoodLab : A Revitalization Strategy for to Pari Yard
Existing Current Condition

Summer
- TAMANDUATEI RIVER
- STORMWATER RUN OFF
- RUN OFF WATER GOES STRAIGHT TO THE SEWAGE
- HEAT IMPERMEABLE SURFACE
- UNPRODUCTIVE SITE

Winter
- TAMANDUATEI RIVER
- STORMWATER RUN OFF
- HEAT IMPERMEABLE SURFACE
- UNPRODUCTIVE SITE
Operative Landscape Proposal

Summer

- Water Recycling Facility
- Cropping Field
- Harvested
- Constructed Wetland
- TAMANDUATEI River

Winter

- Bio Remediation
- TAMANDUATEI River
- Harvested
- Constructed Wetland

Education Job Opportunities

Process:
- Pump the water back to the field

Summer:
- TAMANDUATEI River
- Harvested
- Constructed Wetland
- Cropping Field

Winter:
- TAMANDUATEI River
- Harvested
- Constructed Wetland
- Cropping Field
The Estado Ave overcomes the train rail barrier by going under it. This situation creates a sharp edge condition making it impossible to access the site.
SITE ANALYSIS

CURRENT CONDITION

THE RAIL CREATES A PHYSICAL BARRIER PREVENTING THE PEDESTRIAN TO ACCESS THE SITE.
Operation: Cut & Fill

Reservoir and wetland creation. Mount was created with excavated fill in order to slowly moving and cleaning the storm water run off back to the reservoir.
System

Water Infrastructure and Flow

Bioswales and constructed wetlands, filter and clean the runoff water, improving the water quality.

- Permeable paver parking lot with bioswales
- Primary bioswale
- Secondary bioswale
- Constructed wetland
- Reservoir
- Tamanduatei River
- Wind Farm and water pump
- Farm Field
- Farm Demonstration

Proposal

Water Infrastructure and Flow
SYSTEM

WATER INFRASTRUCTURE AND FLOW

Sectional Model across primary bioswale

- Water pumped from reservoir to fields via pipes
- Path: Flood overflow
- Farm Field: Water going to reservoir
- Path: Flood overflow
- Farm Field
System

Water Infrastructure and Flow

Sectional Model across the informal business pockets

- New Streetscape, Planters to capture the runoff water. Use of permeable asphalt, 45 degrees parking.
- Informal Business Pocket: Permeable surface, and trees for shading
- Water Retention: Bio cleaning
- Farm Field

Water Flow
Water Infrastructure and Flow

Sectional Model across the reservoir and Estado Ave.

Overflow control

New streetscape for Estado Ave. 2 car lanes and wider sidewalk and bike lane.

Reservoir

Water pumped back to farm field

Constructed wetland
System

Water Infrastructure and Flow

Sectional Model across Estado Ave and Tamanduatei River

Water Flow

Sidewalk with planter
Run off water retention and cleaning

Tamanduatei River - biomachine

Estado Ave.
A wind farm is proposed to generate energy to be used in the water pump, the Culinary Arts School and Nutrition Center.
Urban agriculture has a high potential for improving the urban environment, by improving the microclimate, and by preventing erosion and flooding through planting. In addition to fresh and nutritious food to the fortune less local community. To enhance the food culture a Culinary Arts School and a Nutritious Center is going to be part of the program, it provides jobs and access providing support and training.
System

Education

Education is a key point while developing a sustainable environment. To enhance the food culture a Culinary Arts School and a Nutritious Center is going to be part of the program providing support and training.
System

Education

01 Urban Farming Facility, Nursery, Seeding, green house.
02 Nutrition and Culinary Arts School
03 Outside Seating
04 Farmers Market Plaza
System

Education

Second Floor Plan

Section B-B

01 Nutrition and Culinary Arts School
02 School Restaurant
03 Bookstore
04 Coffee Shop
Elevator Statement

The project aims to revitalize this former railway parking infrastructure located downtown São Paulo, called Patio do Pari (Pari Yard) by introducing a new alternative for social inclusion through the development of a program that would: GROW FOOD, by activating the landscape: GROW MIND, by providing education through the implementation of a Community Center devoted to Nutrition education and Culinary Arts; and GROW COMMUNITY, by revitalizing the area and bring it back to the community as a space of recreational value.

Case Statement

São Paulo is the biggest city in Southern hemisphere, with nearly 20 million inhabitants in the metropolitan area. It is a booming, energetic, crowded, polluted, congested, industrial and sprawling city with very few green areas. The site is located in the neighborhood called Pari in downtown São Paulo along railway axis. Like most of postindustrial areas, Pari has suffered with disinterest and disinvestment. The Patio do Pari is adjacent to the Tamanduatei River, the Mercado Municipal Paulistano, and to the Transport Hub Dom Pedro II, three of the most important infrastructures in Central São Paulo, and one of the most important areas of opportunity in the city.

The site is located approximately 42 acres, has been a leftover piece of land in the city, which works as a bus parking location and house the ambulant market called “Feira da Madrugada” (Dawn Market) which name came from the working hours of the market, from 3:00 to 10:00AM.

Lately the Patio do Pari area has been topic of a lot of discussion among the architecture and political community what that area could become. Some would argue that the best direction would be increase the density of the area developing a low-income housing project. On the other hand, some would argue due to the city lack of green space that the area should become a park.

The strategy taken from me in order to revitalize this challenge site is to use the landscape as the frame-work for the project. Therefore having the FoodLab Community Center integrated into the landscape. The FoodLab Center program aims to introduce a new alternative for social inclusion, in downtown São Paulo, through the development of holistic program intent having the Food acting as the connecting thread that ties the community together. The urban farm is designed as part of the landscape in order to revitalize the urban environment and also minimize food and nutritional insecurity to the social vulnerable community living in downtown São Paulo. The Community Center is going to be devoted to Nutrition Education and Culinary Arts providing professional and certificates training and also providing job opportunities.

Goals and Guiding Principles

Reconnect the site to the urban fabric.
• The development of São Paulo has induced a growth process that generated a large number of blighted and underutilized areas along the railroad axes. Parts of São Paulo are wastelands that disarticulate the urban tissue, are impediments for movements, and prevent and integrated and more harmonious city development. On the other hand, if tackled with a comprehensive strategy to revitalize and reconnect those abandoned and underutilized areas to the existing urban fabric can be a source of economic growth, community health and environmental sustainable.

Promote a health and environmental friendly environment.
• Through the urban analysis define the potential users of the area, for instance, the principal anchors and specialized commerce district in its surrounding. In addition, analyze the question of accessibility in macro and micro-scale. Set urban guidelines in order to reconnect the site back to the urban dynamics and its potential users.

Develop a partnership between private, public and non-profit organizations.
• Sustainable communities are enabled by participation at all levels. Partnerships among a variety of urban entities can strengthen the community and provide mutually beneficial supports.

Design Intent

Reconnect the site to the urban fabric.
• Through an interdisciplinary design approach that relies on all facets of sustainability: environmental, economic, social, cultural, political and technological.
• Through the urban analysis define the potential users of the area, for instance, the principal anchors and specialized commerce district in its surrounding. In addition, analyze the question of accessibility in macro and micro-scale. Set urban guidelines in order to reconnect the site back to the urban dynamics and its potential users.

Promote a health and environmental friendly environment.
• In this project the landscape is going to work as an organizational device helping to merge the program to itself, “operative landscape” rather than “host landscape”. Develop the landscape as a working space first, looking at questions of solar (solar farm - energy production), water (water harvesting and re-use), soil (cut and fill, drainage) and wind (another energy production alternative). Study how urban agriculture works in the context of the city, and how it can be applied.

Maximize efficiency. Study strategies in order to minimize the project carbon footprint. Take maximum advantage of passive and vernacular strategies maximizing day lighting and natural ventilation in order to achieve a low operational cost.

Culinary Arts and Nutrition Education.
• Personalized laboratories for each field for each class such as KitchenLab (experimental kitchens), MixologyLab for an interactive hand-on experience for bar-tending training and DiningLab Restaurant, space design not only to give the students full preparation on a real restaurant before heading to the job market, but also providing the diners with an unusual experience in tasting locally grow food elaborated for the students.

Connections between all parts of the program and also its users should promote an overall experience during all phases of the program: training, learning and consuming healthy food, but also interaction among all users.

Develop a partnership between private, public and non-profit organizations.
• Promote visibility of both entities, private and non-profit by showing their work and exposing their students and volunteers to work together.
Program Development

Program

####Non-profit Organization

<table>
<thead>
<tr>
<th>Facility</th>
<th>Number</th>
<th>Sq Footage</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall</td>
<td>1</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>Front desk</td>
<td>1</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Auditorium</td>
<td>1</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Show room</td>
<td>1</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Books & Utensils Store</td>
<td>1</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Restrooms</td>
<td>2</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>Kitchen Lab</td>
<td>2</td>
<td>2000</td>
<td>4000</td>
</tr>
<tr>
<td>Mixology Lab</td>
<td>1</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Winery Lab</td>
<td>1</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Produce Lab</td>
<td>1</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Pastry & Bakery Lab</td>
<td>1</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>Walk-in Cold chamber</td>
<td>1</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Pantry</td>
<td>1</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Storage</td>
<td>2</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>Restroom</td>
<td>4</td>
<td>200</td>
<td>800</td>
</tr>
<tr>
<td>Locker Room</td>
<td>1</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Smart Classroom</td>
<td>6</td>
<td>600</td>
<td>3600</td>
</tr>
<tr>
<td>Computer Lab</td>
<td>1</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>Library</td>
<td>1</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>Janitorial room</td>
<td>2</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>Administration reception</td>
<td>1</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Front desk</td>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Open office</td>
<td>10</td>
<td>55</td>
<td>550</td>
</tr>
<tr>
<td>Coordinator office</td>
<td>2</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>Meeting room</td>
<td>2</td>
<td>350</td>
<td>700</td>
</tr>
<tr>
<td>Teachers lounge</td>
<td>1</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Restroom</td>
<td>2</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>Dining Lab</td>
<td>1</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Dining room</td>
<td>1</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>Private dining room</td>
<td>1</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Wine cellar</td>
<td>1</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Bar</td>
<td>1</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Kitchen</td>
<td>1</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Cold Chamber</td>
<td>1</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Pantry</td>
<td>1</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Locker room</td>
<td>2</td>
<td>300</td>
<td>600</td>
</tr>
<tr>
<td>restroom</td>
<td>2</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>Mechanical room</td>
<td>1</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Electrical room</td>
<td>1</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Employee locker room</td>
<td>2</td>
<td>450</td>
<td>900</td>
</tr>
<tr>
<td>Employee break room</td>
<td>1</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Freight elevator</td>
<td>1</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

Non-profit Organization

<table>
<thead>
<tr>
<th>Facility</th>
<th>Number</th>
<th>Sq Footage</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoop house</td>
<td>2</td>
<td>2500</td>
<td>5000</td>
</tr>
<tr>
<td>Nursery room</td>
<td>1</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>Seed station</td>
<td>1</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>ResearchLab</td>
<td>1</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Classroom (shared facility with the School)</td>
<td>1</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>Outdoor crop</td>
<td>1</td>
<td>20000</td>
<td>20000</td>
</tr>
<tr>
<td>Compost area</td>
<td>1</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Processing and storage</td>
<td>1</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Market</td>
<td>1</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Open office</td>
<td>10</td>
<td>55</td>
<td>550</td>
</tr>
<tr>
<td>Meeting room (shared facility with the School)</td>
<td>1</td>
<td>33650</td>
<td>33650</td>
</tr>
</tbody>
</table>

Landscape’s infrastructure & Articulation

- Clean Energy
- Solar Farm
- Wind Mill
- Rain water harvesting
- Soil storage
- Natural pond
- Orchard
- Recreational area
- Walking path
- Cycling path
- Bike parking
- Public restrooms

NET AREA TOTAL sf

- **71360**

GROSS AREA ESTIMATE sf (1.25)

- **89200**

Diagrams

Levels of Permeability

Landscape

Urban Farming

School / Restaurant

Public Vs. Private

School and Non-profit administration

- **Private**

School Classrooms

- **Private**

School Lobby

- **Semi-public**

Dining Lab Restaurant

- **Semi-public**

Urban Farming

- **Public**
Stakeholder Diagram

Arch 593 | Masters Project | Spring 2011 | Maria Fernanda Lussich Garese

FoodLab: A Revitalization Strategy for Pari Yard

Stakeholder Diagram

Partnership Relationships

- **Site**
- **Community Center**
- **Private Institution**
- **Non-Profit Organization**
- **Non-profit Organization** is responsible for the urban agriculture part of the program engaging the local community in the whole process.

- **Urban development**
- **Public authority**
- **EMURB Urbanization Municipal Company**

- **City**
- **Community**

- **Low-income population**
- **Unemployed population**

- **Environment**
- **Urbanization**
- **Municipal Company**

- **Private Institution** provides financial support and physical space to the Non-profit Organization.

- **Non-profit Organization** is responsible for the urban agriculture part of the program engaging the local community in the whole process.

- **Directors**
- **Faculty**
- **Employees**
- **Students**

- **Volunteers**

- **General Community**
- **Hotels**
- **Restaurants**
- **Farmers**

- **Revitalize the area**
- **Promote Education**
- **Engage the Community**

- **Provides the site at minimum cost.**

- **Community Center**
- **General Community**
- **Hotels**
- **Restaurants**
- **Farmers**

- **Low-income population**
- **Unemployed population**
- **Community**
- **Hotels**
- **Restaurants**
Process Schedule

Project's Development Schedule

<table>
<thead>
<tr>
<th>Week 01</th>
<th>Week 02</th>
<th>Week 03</th>
<th>Week 04</th>
<th>Week 05</th>
</tr>
</thead>
<tbody>
<tr>
<td>November</td>
<td>December</td>
<td>January</td>
<td>February</td>
<td>March</td>
</tr>
<tr>
<td>1 - 9</td>
<td>31 -</td>
<td>28 -</td>
<td>2 - 8</td>
<td>30 -</td>
</tr>
<tr>
<td>GOALS/GUIDING PRINCIPLES</td>
<td>PROGRAM DEVELOPMENT</td>
<td>FINAL REVIEW A WEEK</td>
<td>CONCEPT DEVELOPMENT</td>
<td>DESIGN DEVELOPMENT</td>
</tr>
<tr>
<td>CASE STUDIES</td>
<td>SITE ANALYSIS</td>
<td>SITE MODEL - URBAN SCALE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESEARCH</td>
<td>DIAGRAMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>January</td>
<td>February</td>
<td>March</td>
<td>April</td>
</tr>
<tr>
<td>10 - 16</td>
<td>7 - 13</td>
<td>5 - 11</td>
<td>9 - 15</td>
<td>6 - 12</td>
</tr>
<tr>
<td>GOALS/GUIDING PRINCIPLES</td>
<td>PROGRAM DEVELOPMENT</td>
<td>FINAL REVIEW</td>
<td>CONCEPT DEVELOPMENT</td>
<td>SPRING BREAK</td>
</tr>
<tr>
<td>CASE STUDIES</td>
<td>SITE ANALYSIS</td>
<td>SITE MODEL - URBAN SCALE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESEARCH</td>
<td>DIAGRAMS</td>
<td>CONCEPT DEVELOPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>February</td>
<td>March</td>
<td>April</td>
<td>May</td>
</tr>
<tr>
<td>17 - 23</td>
<td>14 - 20</td>
<td>12 - 18</td>
<td>16 - 22</td>
<td>13 - 19</td>
</tr>
<tr>
<td>GOALS/GUIDING PRINCIPLES</td>
<td>DIAGRAMS</td>
<td>CONCEPT DEVELOPMENT</td>
<td>CONCEPT REFINEMENT</td>
<td>DESIGN DEVELOPMENT</td>
</tr>
<tr>
<td>CASE STUDIES</td>
<td>CONCEPT DEVELOPMENT</td>
<td></td>
<td>URBAN INTERVENTION</td>
<td></td>
</tr>
<tr>
<td>RESEARCH</td>
<td></td>
<td></td>
<td>GUIDELINES</td>
<td></td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>March</td>
<td>April</td>
<td>May</td>
<td></td>
</tr>
<tr>
<td>17 - 23</td>
<td>21 - 27</td>
<td>19 - 25</td>
<td>23 - 29</td>
<td>20 - 26</td>
</tr>
<tr>
<td>GOALS/GUIDING PRINCIPLES</td>
<td>DOCUMENT DUE</td>
<td>FURTHER SITE ANALYSIS</td>
<td>URBAN INTERVENTION</td>
<td>MIDREVIEW WEEK</td>
</tr>
<tr>
<td>CASE STUDIES</td>
<td></td>
<td></td>
<td>GUIDELINES</td>
<td></td>
</tr>
<tr>
<td>RESEARCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>April</td>
<td>May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 - 30</td>
<td>28 - 4</td>
<td>26 - 1</td>
<td>30 - 51</td>
<td>27 - 2</td>
</tr>
<tr>
<td>GOALS/GUIDING PRINCIPLES</td>
<td>FINAL REVIEW WEEK</td>
<td>CONCEPT DEVELOPMENT</td>
<td>DESIGN DEVELOPMENT</td>
<td>DESIGN DEVELOPMENT</td>
</tr>
<tr>
<td>PROGRAM DEVELOPMENT</td>
<td></td>
<td>SYSTEMS RESEARCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SITE ANALYSIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pari yards context

- English Village: Houses from the early 17th century, national landmark. Nowadays it houses architecture offices and restaurants.
- New High Rise Developments.
- Public Housing Developments.

Environment Analysis

São Paulo has a monsoon-influenced humid subtropical climate. In summer, temperatures are between 17 °C (63 °F) and 28 °C (82 °F), and 32 °C (90 °F) on the hottest days. In winter, are between 11 °C (52 °F) and 23 °C (73 °F), and 6 °C (43 °F). On the coldest days, the highest temperature recorded was 35.3 °C (95.5 °F) November 15, 1985, and the lowest recorded was −2 °C (28.4 °F) in August 2, 1955. The average temperatures throughout the year are similar to those of Los Angeles.

Rainfall is abundant. It is especially common in the warmer months average of 219 millimeters (8.6 in), and decrease in winter, average of 47 millimeters (1.9 in). During late winter, especially August, the city experiences the phenomenon known as "veranico" (Little summer), which consists of a bout of unusually hot and dry weather, sometimes reaching temperatures well above 28 °C (82 °F). On the other hand, relatively cool days during summer are fairly common when persistent winds blow from the ocean. On such occasions daily high temperatures may not surpass 20 °C (68 °F), accompanied by lows often below 15 °C.

Latitude: -23.6
Longitude: -46.7
Winter sun angle: 43.4
Summer sun angle: 89.3
Fall / Spring sun angle: 56
VIET VILLAGE URBAN FARM
Mossop + Michaels
New Orleans, Louisiana

PROJECT STATEMENT: Viet Village Urban Farm is an urban farming project located in New Orleans East, an area hard hit by Katrina. The design team assisted the community with the design of the environmental infrastructures systems needed to support an organic urban farming operation, the design of a market area to serve as a community resource and economic catalyst for the community and the development of a flexible, strategic plan for seeking funding for the project and incorporating various labor resources.

PROJECT NARRATIVE: Viet Village is a thriving Vietnamese-American community located in New Orleans East that has established in the mid-1970’s. One of the first activities of the early Vietnamese in New Orleans was the establishment of home-based gardens to grow the traditional fruits and vegetables that weren’t available locally. These gardens were informal and widely scattered across the community: in vacant lots, along the edge of levees, in backyards, anywhere that had decent soil and access to water. Before the devastation of Katrina, there were over 30 acres being farmed throughout the community. There was also a well-established tradition of informal markets in the community, developed as an outlet to sell produce the local growers did not consume in their homes.

HOUTAN PARK
Turenscape
Shanghai, China

BUILT ON A BROWNFIELD OF A FORMER INDUSTRIAL SITE, Houtan Park is a regenerative living landscape on Shanghai’s Huangpu riverfront. The park’s constructed wetland, ecological flood control, reclaimed industrial structures and materials, and urban agriculture are integral components of an overall restorative design strategy to treat polluted river water and recover the degraded waterfront in an aesthetically pleasing way. The site is a narrow linear 14-hectare (34.6 acre) band located along the Huangpu River waterfront in Shanghai, China. This brownfield, previously owned by a steel factory and a shipyard, had few industrial structures remaining and the site was largely used as a landfill and lay-down yard for industrial materials. Regenerative design strategies used to transform the site into a living system that offer comprehensive ecological services included: food production, flood, water treatment, and habitat creation combined in an educational and aesthetic form. The site is destined to be an innovative demonstration of the ecological culture for the 2010 Expo.
HUNTINGTON URBAN FARM

ARCHITECT TIM STEPHENS
NEW ZEALAND

The farm responds to the lack of support for the sustainable practice of growing and cultivating one’s own food source, an important issue Stephens sees as becoming more prevalent as our population increases. The farm provides convenient access to individualized plots of land where users can produce their own food right in the middle of the town.

Located close to the town’s public library, church and nursery, the Urban Farm project is comprised of farmable plots of different sizes to suit individual users/small families. “In providing these farming plots for the community to use, the precinct will become a hub for social activity and interaction, something sorely missing in many existing communities,” explained Stephens.

The Huntington Urban Farm is viewed as a model that can be integrated into existing communities on other sites in different Long Island townships. Within this particular design, the farm includes winding paths and changing levels to provide a “sense of adventure and discovery as one moves through the precinct.” Stephens sees the design as promoting social interaction, especially with its converging paths which can lead users to happen upon one another while walking through the garden.

“Huntington Urban Farm is to pave the way for fresh thinking in terms of how communities interact with each other and how a common, productive bond can be achieved through sustainable practices,” added Stephens.

Co-op Canyon

STANDARD ARCHITECTURE
Re:Vision Dallas Competition

Standard Architecture’s conceptual design, Co-op Canyon, has recently received an honorable mention for the Re:Vision Dallas Competition. The competition provided participants with the opportunity to create an innovative and sustainable prototype for an urban community. Standard’s radical approach focused on how the residents could potentially gain equity through participation in construction, agricultural, maintenance, education and conservation programs central to the sustenance of the community.

Co-op Canyon creates a sustainable, zero carbon space fit for 1,000 users. Inspired by the cliff dwellings of the Anasazi Indians, the Co-op features terraced urban conditions which overlook a lush urban canyon.

The dwelling terraces are lined with front yard gardens that host native plants varying in color and texture, while backyard gardens emphasize the ends of the terraces allowing residents to grow, exchange, and share canyon-grown produce.

The canyon walls are relatively thin which allows ample natural light and air circulation within the dwellings. At the street level, the porous walls form the threshold between the community and the urban context, linking the terraced canyon floor to the streets of Dallas.
John Ronan Architects
Chicago

This 74,000 square foot youth center, located in one of Chicago’s poorest neighborhoods, demonstrates a commitment to social progress in providing a constructive environment for area youths to spend their after-school hours. The center provides support for the programs of a 300-member drill team/performance group for children aged eight to eighteen, which provides space for various youth educational and recreational programs for disadvantaged children to better their chances of success in life.

Programmatic Sustainability

The building’s main space is a programmatically adaptable gymnasium that converts to a 600-seat performance theater. The space serves daily as a practice space for the drill team, and converts to theater use via a motorized telescoping seating system. Motorized curtains and ceiling panels serve to darken the space and reveal stage lighting, and motorized doors open to reveal the stage. This space, together with the adjacent cafeteria that overlooks the gymnasium, comprises the center of energy for the complex. Wrapping around this main space are programmatically adaptable bars that support a variety of educational and recreational programs, including an art room, computer lab, dance room, recording studio, band room, music room, costume shop, stage shop, tutoring spaces, classrooms, offices and exhibition spaces. These bars contain flexible space that can be modified over time as programs in the youth center change.

Classrooms, offices and exhibition spaces on the third floor overlook a large planted roof garden above the gymnasium/theater and cafeteria. The roof garden serves as an outdoor classroom to support youth horticultural programs and environmental awareness. With a 24” depth of soil, children can plant and harvest vegetables, flowers, herbs, grasses, and can be used as a nursery for neighborhood garden clubs. Skylights dot this garden landscape to bring natural daylight into the gym and cafeteria below. The garden collects and recycles rainwater, and serves to reduce the urban heat island effect in a way that simultaneously reinforces the educational mission of the youth center. The site surface employs porous paving surfaces to reduce the pressure on storm water management systems, while the parking lot doubles as a practice parade ground, surrounded by a perforated metal screen fence to provide for a secure outdoor practice environment but allow visual access to the performers inside from the street. Raised planters at the heavily-trafficked street provide an extra safety precaution to protect youths as they come to and from the center.

Growing Home

Growing Home is a non-profit organization that provides job training and employment opportunities for homeless and low-income people within the context of an organic agriculture business. The design and master plan of the new Growing Home urban campus at 58th and Wood, in the Englewood neighborhood in Chicago, is a small but packed site of growing fields, hoop houses, greenhouses, classrooms and administrative spaces, as well as community amenities such as farm stands and CSA drop-offs. Design includes alternative energy sources and elements for participation by the community and overall flexibility.

While the site is small – only about 2/3 of an acre – they are able to grow a great deal of produce. In 2008 they produced approximately 5,000 lbs of produce; in 2009 they grew and harvest over 10,000 lbs.

At the Wood Street urban farm, they grow spinach, salad mix, arugula, and Swiss chard, which all like to grow in the warm, moist hoop house climate, as well as tomatoes, zucchini, beets, turnips, kale, mustard greens, and collards.

Growing Home
Shed Studio
Chicago

Growing Home is a non-profit organization that provides job training and employment opportunities for homeless and low-income people within the context of an organic agriculture business. The design and master plan of the new Growing Home urban campus at 58th and Wood, in the Englewood neighborhood in Chicago, is a small but packed site of growing fields, hoop houses, greenhouses, classrooms and administrative spaces, as well as community amenities such as farm stands and CSA drop-offs. Design includes alternative energy sources and elements for participation by the community and overall flexibility.

While the site is small – only about 2/3 of an acre – they are able to grow a great deal of produce. In 2008 they produced approximately 5,000 lbs of produce; in 2009 they grew and harvest over 10,000 lbs.

At the Wood Street urban farm, they grow spinach, salad mix, arugula, and Swiss chard, which all like to grow in the warm, moist hoop house climate, as well as tomatoes, zucchini, beets, turnips, kale, mustard greens, and collards.
The High Line
Field Operations
New York

Field Operations won the 2004 International Competition for the Design of the High Line, a 1.9 kilometer long, abandoned elevated railway in New York City. The project challenges the designers to work with a pre-existing structure, artefact existing elements of the abandoned rail, therefore giving the High Line a compelling new life and future as a one-of-a-kind recreational amenity and public promenade. The design had to be especially innovative and creative in its physicality and dimensions; promotion of green materials and practices; phased implementation, short and long term planning; and consideration of future maintenance and operation.

James Corner’s Field Operations design concept evolves from the respect of the innate character of the High Line: its singularity and linearity and its emergent properties with wild plant-life, meadowns, thickets, vines, mosses, flowers – intermixed with the free flow of water and the intermingling of organic plantlife with harder materials. The paving areas are used to accommodate a variety of uses. All of the planting areas on the High Line are underlined with green roof or living roof layers including a water retention, drainage and aeration panel, gravel base layer and filter fabric.

As part of the design was developed a new paving system, built from linear concrete planks with open joints, specially tapered edges and seams that permit the free flow of water and the intermingling of organic plantlife with harder materials. The paving areas are used to accommodate a variety of uses. All of the planting areas on the High Line are underlined with green roof or living roof layers including a water retention, drainage and aeration panel, gravel base layer and filter fabric.

Olympic Sculpture Park
Weiss / Manfredi Architecture
Seattle

In 2001 Seattle Art Museum selected New York based Weiss/ Manfredi Architecture/ Landscape/ Urbanism from an international pool of 52 applicants. Their design vision expressed a dynamic integration of landscape, architecture and urban design. The SAM wanted to turn the site as much as possible into a functioning ecosystem, while providing a unique setting for outdoor sculpture and public recreation.

Envisioned as a new urban model for sculpture parks, this project is located on Seattle’s last undeveloped waterfront property – an industrial brown field site sliced by train tracks and an arterial road. The design connects three separate sites with an uninterrupted Z-shaped “green” platform, descending 40 feet from the city to the water, capitalizing on views of the skyline and Elliott Bay, and rising over existing infrastructure to reconnect the urban core to the revitalized waterfront. Formerly owned by Union Oil of California (Unocal), the area was used as an oil transfer facility. Before construction of the park, over 120,000 tons of contaminated soil was removed. The remaining petroleum contaminated soil was capped by a new landfill with over 200,000 cubic yards of clean fill, much of it excavated from the park, over 120,000 tons of contaminated soil was removed. The remaining petroleum contaminated soil is capped by a new landfill with over 200,000 cubic yards of clean fill, much of it excavated from the park. By capitalizing on views of the skyline and Elliott Bay, the park transforms the site into a new urban space for sculpture and public recreation.

Weiss and Manfredi develop an innovative Z-shaped configuration connecting three parcels into a series of a series of integrated responses to the constraints and opportunities presented by the varied and discontinues sites. Together, they created a reinforced landform that not only unites the site’s topography, but also becomes an active agent in all the park’s performance and opportunities. The park in turn becomes a synthetic entity, suitable for the cultural, urban and ecological conditions it serves.
Parc de la Villette was a competition held in Paris in 1982. Designers were asked to develop a new public park on a site which housed a former slaughterhouse. OMA’s proposal was to runner up and built. Their approach to the park superimposed the idea of the skyscraper onto the landscape. Whereas the skyscraper consists of multiple floors, each capable of holding a unique program element, connected by the vertical circulation, OMA proposed a series of parallel zones along the park. Each zone would be the staging ground for a different, unrelated program.

Components:
Separating possible programs into parallel striped zones. In one direction the user remains within the given zone, the user can experience a wide variety of events with a short distance from each other. Different program elements can exist in close proximity allowing for unexpected overlaps and user experiences. Facilities and more permanent program elements can be distributed over a grid throughout the site. Natural elements, circulation, and dispersed cultural elements can bring a sense of connectedness across the site.

Bernard Tschumi’s proposal won the competition and had his project implemented. Tschumi saw the site as a medium for cultural activities. A series of red buildings and pavilions were laid out on a grid and superimposed over the park.

Components:
The grid system set up by the red follies in the park create an organizational system that allows visitors to navigate the park while still encountering variations throughout the landscape. The follies have a variety of uses; some are restaurants or have a specific program, while others are indeterminate in use. The park, while organized has many opening to allow future programs to develop. The landscape is speculative and open.
Fresh Kills
James Corner Field Operations
New York

The Fresh Kills Landfill is an inactive 2,200 acre (890 hectares) landfill in the New York City borough of Staten Island in the United States. The name comes from the landfill’s location along the banks of the Fresh Kills estuary in western Staten Island. The landfill was opened in 1947 as a temporary landfill, but eventually became New York City’s principal landfill in the second half of the 20th century, and it was once the largest landfill in the world.

In October 2009, reclamation of the site began on a multi-phase, 30 year, site development for reuse as Freshkills Park.

Stearns Quarry
Bernard tshumi’s proposal
Chicago

BIG MOUND + BIG HOLE: Fill material is pushed and pulled to create a unique urban topography recalling the former drama of the quarry depths, while creating new links to the surrounding community.

The park was originally Chicago’s first quarry, in operation from 1830’s to 1970. After its closure as a mine, the hole was then used as a municipal landfill. Recently, D.I.R.T Studio had re imagine the site as a city park. The depression of the quarry is now used as a fish pond, the surroundings landscape works as a water treatment for rain runoff. The hill has been built up using the soil from the cut.

In a predominant flat city like Chicago, terrains changes become a unique park feature and attraction. The sunken pond allows the cityscape to disappear behind the surrounding terrain. The hill becomes a focal point for the park and neighborhood in general creating new views of the city.

The stepped landscape collects and slows down the rainwater movement towards the pond area. Along the path, treatment gardens help to clean the water. In other words, the landscape benefits the ecological system of the park and neighborhood.

Case study
The George Brown Culinary School

Gow Hastings Architects
Toronto, Canada

The 19,000 sq.ft, three story, in-fill addition and 47,000 sq.ft. interior renovation of the George Brown Chef School on Toronto’s Adelaide Street East dramatically opens and transforms a 1980’s building into a showcase for innovation in culinary education. The $18 million project enables the college to expand its food and hospitality programs by as much as fifty per cent, to attract and retain the best faculty and students and to augment the school’s presence within the city by initiating a recognizable campus landmark.

No longer confined to rear and basement kitchens, George Brown’s student chefs are visible in a culinary performance through a two story glass façade that exposes four kitchen “labs” to the street. The students’ starched white chef uniforms and hats are highly visible against a backdrop of gleaming stainless steel workstations, ranges, ovens, washing stations and racks of pots and pans. The stainless steel is accented by brightly-coloured pure hood and walls, sparkling lighting, lush herb gardens and plasma monitors that add a kinetic and spectacular effect to the architecture as they project close-up views of food preparation. These exposed labs reflect the changing profile of the culinary industry by not only glamorizing the preparation of food, but also by offering students a hands-on experience, rather than learning within more conventional demonstration kitchens.

The street level views into the interiors of the kitchen labs provide the ultimate branding tool for the college. Even when the school is closed, horizontal strips of colored glass ensure that the façade provides an interesting counterpoint to the austere visual landscape of predominantly historic masonry buildings along Adelaide Street. From the interior, the glazing provides views down Frederick Street towards the school’s newly created learning restaurant, The Chefs’ House, visually connecting the two buildings. These fresh facilities increase the dynamism of George Brown’s presence within the neighborhood and frame the street so that there are clear possibilities for creating an external campus identity.

References

“Cities Farming for the Future – Urban Agriculture for Green and Productive Cities”

“Growing better Cities – Urban Agriculture for Sustainable Development”

“Sustainable Urbanism: Urban Design with Nature”

“On Farming: Bracket 01”
White, Mason; Przybylski, Maya. Actar, Barcelona, 2010.

“Actions: What You Can Do With the City?”
Borasi, Giovanni; Zarind; Mirko. Canadian Center for Architects, 2008.

“The Vertical Farm: Feeding the World in the 21st Century”

“Planting Green Roof and Living Walls”

“Sustainable Urban Design: An Environmental Approach”

“Design for water: rainwater harvesting, storm water catchment, and alternate water reuse”

“The Landscape Urbanism Reader”

“Living Systems: Innovative Materials and Technologies for Landscape Architecture”

Bibliography

Books

“Urban Agriculture: Small, Medium, Large”

“Urban Agriculture in Belem, Brazil”

“Identity and Memory in the Modern Metropolis: Elements for a Discussion: the Case of Sao Paulo”

“Brasil, Grande bloco pavilhonar apropiacao de elementos de edificacoes lineares”

“Open kitchen: two architectural firms share the credit for reconfiguring a Toronto Culinary Arts School and its showcase restaurant”

“Metropolitan Agriculture”

Web Site

Farm City – New Visions for Urban Agriculture
www.farmcity.us

Metropolitan Agriculture
www.metropolitanagriculture.com