IPRO 325
Designing Affordable Water, Energy, and Shelter Solutions for the World’s Poor
Problem
• 3 million people live on less than $3 a day worldwide.
• Malnutrition affects 792 million people in the world.
• 5 million children die from malnutrition in rural poor regions.

• Micronutrient malnutrition (MNM):
 A medical condition resulting from an insufficient consumption of nutrients
EVAPORATIVE COOLING SUBGROUP

Background

• 1 out of 5 people (158 million) suffering from MNM has access to needed fruits and vegetables, but are unable to store them.
• 20% of fruit and vegetable losses occurs during storage.
• Loses are primarily temperature and humidity related.
EVAPORATIVE COOLING SUBGROUP

REFRIGERATION FOR THE WORLD’S RURAL POOR

Goal
• Help combat Micro-Nutrient Malnutrition (MNM)
 • Provide better way to store food for extended periods of time

Objectives
• Improve on previous evaporative cooling designs
 • Continue research on effective prototype
 • Design prototype
 • Construct prototype
 • Test prototype
 • Provide plan for field implementation
INDIVIDUAL ROLES

Sara Wilde
Team Leader/
Research Manager/
Field Implementation

Abraham Akutagawa
Location Selection/
Lab Maintenance/
Field Manual

Young Ju Jo
Design Manager/
Project Plan/
Testing

Narciso Corral Jr.
Team Co-Leader/
Construction Manager/
Field Manual/
Testing

Andrew Rust
Engineering Notebook/
Field Workshop Lead
METHODOLOGY

BEGINNING OF SEMESTER

- RESEARCH
- EVAPORATIVE COOLING
- LOCATION
 - BRICK ‘N’ BRICK
 - POT ‘N’ POT
 - HYBRID

DESIGN

- BRICK ‘N’ BRICK
- POT ‘N’ POT
- HYBRID

CONSTRUCTION

- TESTING ENCLOSURE

TESTING

- BRICK ‘N’ BRICK
- POT ‘N’ POT
- HYBRID
- TESTING ENCLOSURE

END OF SEMESTER

- MANUAL
- WORKSHOP
Location Requirements

- Access to surface water
- Sand and Clay in the soil
- High Temperature, Mid-Low Humidity Season
- Population with pottery skills

Chosen Sites

Sincape, Peru
• Reduction in air temperature that occurs when water evaporates

• Cool an object or a liquid in contact

• Higher Temperature, More Wind, and Lower Humidity = more evaporation

http://techalive.mtu.edu/meec/module01/EvaporationandTranspiration.htm
RESEARCH

MATERIAL SELECTION

Adobe Bricks

Terra Cotta Pots
Zeer Pot System

Static Cooling System
DESIGNS

- IPRO 325 Introduction
- Cooling Subgroup
- Individual Roles
- Methodology
- Research
- Design
- Construction
- Testing
- Analysis
- Conclusions
- Obstacles
- Continuation Plan
- Acknowledgements
- Questions/Comments

Pot ‘N’ Pot

Hybrid

Brick ‘N’ Brick
CONSTRUCTING THE BRICK ‘N’ BRICK

• IPRO 325 Introduction
• Cooling Subgroup
• Individual Roles
• Methodology
• Research
• Design
• Construction
• Testing
• Analysis
• Conclusions
• Obstacles
• Continuation Plan
• Acknowledgements
• Questions/Comments
CONSTRUCTING THE HYBRID

• IPRO 325 Introduction
• Cooling Subgroup
• Individual Roles
• Methodology
• Research
• Design
• Construction
• Testing
• Analysis
• Conclusions
• Obstacles
• Continuation Plan
• Acknowledgements
• Questions/Comments
CONSTRUCTING THE POT ‘N’ POT

CONSTRUCTING TESTING ENCLOSURE
IPRO 325 Introduction
• Cooling Subgroup
• Individual Roles
• Methodology
• Research
• Design
• Construction
• Testing
• Analysis
• Conclusions
• Obstacles
• Continuation Plan
• Acknowledgements
• Questions/Comments

TESTING
TESTING

TESTING MATERIALS

• Pot ‘N’ Pot Structure
• Brick ‘N’ Brick Structure
• Hybrid Structure
• 3 Thermometers
• 2 Indoor Conventional Heaters
• 1 Humidifier
• Sealed Testing Enclosure
• 3 wet Clothes
• Water Bucket
• Barometer

• 5 days
• 16 hours combined
• In heated environment
• Varying humidity
• Brick VS. Hybrid
• Brick VS. Hybrid VS. Pot
ANALYSIS

Temperature distribution with (26%-48%) humidity
RESULTS

Built working prototype
 Local materials
 Sustainable

Tested in third-world conditions

Testing Performed
 Average temperature decrease 10-14°F
 Best result was a 17°F drop
 Pot in pot test average decrease of 7°F

CONCLUSIONS

VS.

• Cooler
• Large structure
• More expensive
• Hard to clean
• Hard to maintain

• Near same results as brick
• Smaller to build
• Same size storage chamber
• 1/3 the cost
• Easier to clean & maintain
RESULTS

Budget:

<table>
<thead>
<tr>
<th>Research</th>
<th>Design</th>
<th>Bricks</th>
<th>Terra Cotta</th>
<th>Testing</th>
<th>Misc.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
<td>$0</td>
<td>$185</td>
<td>$43</td>
<td>$50</td>
<td>$70</td>
<td>$348</td>
</tr>
</tbody>
</table>

Hours:

<table>
<thead>
<tr>
<th></th>
<th>Research</th>
<th>Design</th>
<th>Construction</th>
<th>Testing</th>
<th>Admin</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sara</td>
<td>15</td>
<td>5</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>Narciso</td>
<td>20</td>
<td>15</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>115</td>
</tr>
<tr>
<td>Young Ju</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>Abraham</td>
<td>20</td>
<td>5</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>Andrew</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>Total</td>
<td>95</td>
<td>55</td>
<td>110</td>
<td>80</td>
<td>105</td>
<td>465</td>
</tr>
</tbody>
</table>
OBSTACLES

• Making Structures mobile

• Construction Site

• Transportation & Acquisition of Construction Materials

• Replicating target region environment for testing

• Equipment failure

• Testing equipment damage

• Updating Project Plan to meet Milestones & Objectives

• Coordinating with team and varying schedules

• Fundraising
CONTINUATION PLAN

• Additional testing
 • FOCUS ON DESIGN IMPROVEMENTS
 • Size and shape variations
 • Varying water levels
 • Different lid designs
 • Long term testing
 • Using food from the target region for storage tests

• Create Construction Manual

• Complete Educational Workshop

• Field Research
 • Can targeted region build our design, per our criteria?
 • Does our design actually work in the field?
 • How durable will it be in the field?
 • How long will it last?
ACKNOWLEDGEMENTS

• Architecture Department (Bldg 3410)

• Chemistry Department Lab Resources (Wheishnick)

• Dr. Schug

• Dr. Ferguson

• Dr. Jacobius

• Engineer Without Borders

• Political Science Department (Financial Contribution)

• IIT Facilities
QUESTIONS / COMMENTS?