IPRO 331 - Non-Invasive Blood Glucose Monitoring
Back Row: Brogan Dexter, Daisy Rathod, Sangeeta Bookseller, Jon Young, Jude Kieltyka.

Front Row: Adeseye Adekeye, Anu Topgi, Shivani Shah, Chad Nishizuka
IPRO 331 - Non-Invasive Blood Glucose Monitoring

- Purpose
- Background
- Design
- Cost Analysis
- Obstacles
- Conclusion
- Recommendations for Future
Diabetes Background

- **Type 1:**
 - “Juvenile Onset”
 - Autoimmune Disease in which immune system attacks the Pancreatic Beta cells which produce insulin
 - Insulin is a hormone used by the body to metabolize glucose
 - Require Regular Insulin Injections
 - Must constantly monitor blood glucose to avoid both hyperglycemia and hypoglycemia.

- **Type 2:**
 - “Adult Onset”
 - Pancreas Still Produces Insulin, but “Insulin Resistance” prevents the body from utilizing it
 - Accounts For 90-95% of all diabetes cases
Hyper and Hypoglycemia

- **Hyperglycemia**
 - Blood glucose is above recommended range
 - Blurry Vision, Excessive Thirst and possible long term effects such as blindness and even early death

- **Hypoglycemia**
 - Blood glucose is below recommended range
 - Possible Medical Emergency
 - “Insulin Shock”
 - Can quickly lead to coma and death
Current Methods

- Require finger pricks for blood
- The blood is then blotted onto test strips
- Test strips are placed in a reader
- Very Cumbersome and stressful, particularly for young children
Invasive Procedure Elimination

Continuous monitoring

Cost Reduction

Eliminate need to restock monitoring supplies
Design Possibilities

- Measurement Medium
 - Interstitial Fluid
 - Blood
 - Saliva

- Medium Extraction
 - Vacuum
 - Ultrasound
 - Iontophoresis
Measurement

Infrared Spectroscopy
 ✓ Near Infrared
 ✓ Far Infrared

Photo-acoustic glucose measurement

Impedance Spectroscopy
Impedance Spectrum

Increasing Concentration of Y

Voltage
Design possibilities

- Cleaning the device
 - Self-cleansing sensors
Interstitial fluid

Ultrasound permeation

Vacuum extraction

Impedance spectroscopy

✓ Resonates Glucose Molecule

✓ Specific Frequency isolation
The vacuum pump then begins its first phase by drawing up any sweat.
Cost Analysis

Equipment Needed

- Ultrasound
 - Transducer
 - Amplifier

- Vacuum Unit
 - Batteries
 - Vacuum Pump

- Cleaning Components
 - Sensors
 - Titanium Oxide Film

- Impedance Spectroscopy
 - Circuit Components
 - Impedance Sensors
Cost Analysis

Current Technology

- Invasive Blood Glucose Monitoring
 - 50 Test Strips: $ 30 (replenish every 25 days or less)
 - 200 Lancets: $ 10 - $ 50 (replenish every 3 months)
 - Testing Apparatus: $ 50 - $ 100 (Lower Level Monitors)
 - Consumable Auto-Sensors (certain machines): ~ $ 70

- Replenishment of Supplies required

- Average Cost per Test: $ 0.70 - $ 0.80
Our Technology

- Non-Invasive Blood Glucose Monitoring

<table>
<thead>
<tr>
<th>Items</th>
<th>Cost Range ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasound components</td>
<td>25-100</td>
</tr>
<tr>
<td>Vacuum device including batteries</td>
<td>15-20</td>
</tr>
<tr>
<td>Cleaning Components</td>
<td>~ 10</td>
</tr>
<tr>
<td>Impedance Materials</td>
<td>~ 150</td>
</tr>
</tbody>
</table>

- Total Cost Range: $200 to $280
- No replenishing of supplies. **One Time Purchase!**
Obstacles

- Vacuum pressure
- Sweat convolutions
- Concentration Convolutions
- Cleaning measurement chamber
- Who is on the patent?
Future Direction

- Develop Working Prototype
- Obtain patent rights for the idea
- NCIAA biomedical engineering award
- Obtain Sponsorship for further development
We would like to thank Mr. Ray DeBoth for all of his help in our development of ideas and the technical assistance he provided to our team. Without him there would have been no Electrical Engineering perspective.

We would also like to thank Dr. Gottleib for helping us to develop a disclosure statement, the first step to obtaining a patent.

Finally, we would like to thank Dr. Emmanuel Opara for his guidance through the project and his help in developing our ideas into a prototype.
References

www.uspto.gov
http://jchemed.chem.wisc.edu/JCESoft/CCA/CDA5/MAN/1ORGANIC/ORG18/TRAM18/B/1003123/MOVIE.HTM
http://www.engineering.ucsb.edu/Announce/mitragotri.html
http://www.tracegasfac.science.ru.nl/whatis.htm
http://www.physics.iitm.ac.in/~cvijayan/photoacoustic.htm
http://www.skin-forum.org.uk/abstracts/ching.php
http://chipo.chem.uic.edu/web1/ocol/spec/IR.htm
http://www.wpi.edu/Academics/Depts/Chemistry/Courses/CH2670/infrared.html
http://www.toto.co.jp/hydro_e/index.htm
http://jap.physiology.org/cgi/content/abstract/53/6/1540
http://health.howstuffworks.com/sweat.htm