Plug-in Hybrid Electric Vehicle
IPRO 356

Business Team
Jason Fuglestad
Dolapo Popoola
Sujit Thomas
Seung Baek
Mary Cyriac
Matt Anderson
Yin Zhao

Technical Team
Julie Patti
Jae Suk Lee
Hassan Ali

Instructor: Sanjaka Wirasingha
Faculty Advisor: Dr. Ali Emadi

URL: www.isopomoto.com
IPRO 356/Isopomoto

Mission: To analyze the business opportunities for Plug-In Hybrid Electric Vehicles (PHEV) for the Grainger Power Electronics Lab and AllCell Technologies

Team Structure
- Technical and business divisions
- Collaboration with Illinois Institute of Technology
The Problem

1. Oil Prices:
 - Three fold increase in price, last five years
 - $2.4 billion, the avg. daily cost (U.S)
 - Cost will continue to increase

2. Finite resources:
 - Reserve estimated at 1 trillion barrels
 - 27.7 billion barrels produced in 2004
 - 33 billion bar/yr in 2010, expected

3. Environmental Pollution:
 - Global Climate Change
 - Ozone Depletion
 - Emissions and smog
Our Solution

HEV → PHEV Conversion Kits

- Advanced Technology
 - Externally charged battery

- Wide Application
 - Kit can convert any existing hybrid vehicle

- Value
 - Reduces oil consumption and emissions
Introduction to the PHEV

Battery Pack (Li-ion or NiMH)

PHEV Kit

To Wall

Conventional Hybrid

Source: 2006 EDrive Systems LLC.
HEV Market Potential

HEV Sales: 2000-2005

Cumulative sales of major auto-manufacturers like Toyota and Honda

- Owned by the ‘Hybrid Guru’
- Top selling certified hybrid dealer
Introduction to the Simulation Software (ADVISOR)

• Developed by the National Renewable Energy Laboratory
• Predicts the performance of a vehicle
• Flexibility in design:
 • Choose an engine type
 • Determine an optimal electric motor and a battery
 • Decide a control strategy
 • Select drive cycle and number of cycles
Plug-in Hybrid Escape Simulation Results

Fuel Economy (city)
- Twice as efficient

Emissions
- Cut emissions in half
Component/Cost Analysis

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Cost per kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery (Li-ion)</td>
<td>245V, 24Ah, 6kWh</td>
<td>10,000</td>
</tr>
<tr>
<td>Power Electronics System (AC/DC Converter)</td>
<td>AC Input Voltage 85 – 264 V AC</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>DC Output Voltage 2 – 48 V DC</td>
<td></td>
</tr>
<tr>
<td>Power Electronics System (DC/DC Converter)</td>
<td>DC Input Voltage 12 V DC</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>DC Output Voltage 350 V DC</td>
<td></td>
</tr>
<tr>
<td>Assembly Labor</td>
<td>$25/hr</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>20hrs per kit</td>
<td></td>
</tr>
<tr>
<td>Insulation / Packaging</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Miscellaneous Components</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12,000</td>
</tr>
</tbody>
</table>
ISOPOMOTO - SWOT Analysis

Strengths
- Technical Knowledge
- Productive and committed team

Weaknesses
- Insufficient capital
- Lack of established customer base

Opportunities
- High gasoline prices
- Increased environment awareness

Threats
- Alternative fuels
Major Industry Trends

- The gradual decline of the big 3 (General Motors, Ford, DaimlerChrysler)
- Alternative fuels gain popularity
- Fuel efficiency becomes key selling element (CAFE standards)
 - 27.5 MPG for passenger cars
 - 20.7 MPG for light trucks

Source: Plunkett Research Ltd.
Fuel Efficiency becomes key selling element

Survey Results

- Fuel efficiency: 48.33%
- Maintenance, Repair, Quality, Reliability: 18.33%
- Safety: 15.83%
- Luxury, Features, Comfort, Smooth ride: 15.00%
- Cost, Resale value, Warranty, Economy: 13.33%
- Fast, Speed, Engine, Power, Performance: 10.83%
- Look, Style, Aesthetic, Design: 9.17%
Alternative Fuels

- Ethanol
- Diesel
- Hydrogen Fuel cells
- Bio-diesel
- Electricity – fully electric
- Natural Gas (compressed and liquid)

ISOPOMOTO – Political, Economic, Social and Technological Analysis

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>IMPACT ON ISOPOMOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Political</td>
<td></td>
</tr>
<tr>
<td>1. Federal safety regulations (high voltage)</td>
<td>Might delay acceptance</td>
</tr>
<tr>
<td>2. Current tax reduction is $2,000</td>
<td>Will encourage sales</td>
</tr>
<tr>
<td>Economic:</td>
<td></td>
</tr>
<tr>
<td>Illinois is transitioning to a competitive market structure for electricity beginning Jan 1, 2007</td>
<td>Less economic appeal</td>
</tr>
<tr>
<td>Social:</td>
<td></td>
</tr>
<tr>
<td>Trends (Health, Environment etc)</td>
<td>Will encourage sales</td>
</tr>
<tr>
<td>Technological:</td>
<td></td>
</tr>
<tr>
<td>Development of alternative fuels</td>
<td>May reduce sales</td>
</tr>
</tbody>
</table>
Barrier to Entry

Internal factors
- Large capital cost

External factors
- Federal regulation
- Dramatic change in fuel or electricity costs
Risk Analysis

- Internal risks
 - Financial risks
 - Logistical risks
 - Technical risks
 - What if it does not work?
- External risks
 - Legal risks
 - Competitive risks
Primary Competitors

<table>
<thead>
<tr>
<th>Company</th>
<th>Background</th>
<th>Target Clients</th>
<th>Partnerships</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnergyCS</td>
<td>• First to introduce PHEV commercially</td>
<td>• Toyota</td>
<td>• UK company</td>
</tr>
<tr>
<td>(www.energycs.com)</td>
<td>• 2007 target for direct consumer sales</td>
<td>• Ford</td>
<td>• Amberjac Projects Ltd</td>
</tr>
<tr>
<td>Hymotion</td>
<td>• Introduced for fleet use</td>
<td>• Honda</td>
<td>• Calcars</td>
</tr>
<tr>
<td>(www.hymotion.com)</td>
<td>• 2006 direct consumer sales</td>
<td>• Lexus</td>
<td>• Valence Technology</td>
</tr>
<tr>
<td></td>
<td>• Target price for kit is $9,500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison to Primary Competitors

<table>
<thead>
<tr>
<th>Company</th>
<th>Price($)</th>
<th>Fuel Efficiency (city mpg)</th>
<th>Emission Efficiency (g/mile)</th>
<th>Battery type</th>
<th>Battery size (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isopomoto</td>
<td>12,000</td>
<td>124.3 (Toyota Prius) 76.3 (Ford Escape)</td>
<td>Zero Emission (City drive cycle 2.97)</td>
<td>lithium-ion with thermal management</td>
<td>6kWh</td>
</tr>
<tr>
<td>EnergyCS</td>
<td>Goal price : 12,000</td>
<td>112 (Toyota Prius)</td>
<td>Zero Emission</td>
<td>lithium-ion</td>
<td>9kWh</td>
</tr>
<tr>
<td>HyMotion</td>
<td>12,500</td>
<td>100 (Toyota Prius) 60 (Ford Escape)</td>
<td>Zero Emission</td>
<td>lithium-ion</td>
<td>L5 : 5kWh L12 : 12kWh</td>
</tr>
<tr>
<td></td>
<td>Goal Price: 9,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(emission efficiency is based on the city driving in 28mile/h)
Comparison to Primary Competitors

Isopomoto - 124.3 mpg
EnergyCS - 112 mpg
HyMotion - 100.6 mpg
Customer Analysis

Three Main Types of Customers have been identified

1. Direct Consumer
2. Fleets
3. Indirect Customer
 i. Partnership with a global auto company
 ii. Licensing to major auto manufacturers
Case Study: Chicago Transit Authority (CTA)

Second largest public transportation system in the U.S.

Over 1.6 million customers and 205,000 miles every weekday

Increase in fuel price generated $9.1 mil. additional operating cost

The Fleet in 2005
- Number of buses: 2033
- Distance covered: 74.8 million miles
- Fuel consumption: 24 million gallons
- Cost of fuel: 43 million dollars
CTA: Cost Analysis / bus

Fuel saving in 2007 will be $17,127 per bus

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mileage</td>
<td>37,000 mi</td>
<td>37,000 mi</td>
<td>37,000 miles</td>
</tr>
<tr>
<td>(22,400 gas + 14,600 electric)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel efficiency</td>
<td>3.13 mpg</td>
<td>4.9 mpg</td>
<td>4.9 mpg</td>
</tr>
<tr>
<td>4 miles / kwh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel consumption</td>
<td>11,805 gal</td>
<td>7,551 gal</td>
<td>4571.4 gal</td>
</tr>
<tr>
<td>3650 kwh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of fuel</td>
<td>$2.41/gal</td>
<td>$2.41/gal</td>
<td>$2.41/gal</td>
</tr>
<tr>
<td>$80.0838 / kwh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tot_fuel cost</td>
<td>$28,450</td>
<td>$18,198</td>
<td>$11,323</td>
</tr>
<tr>
<td>($11,017 gas + $305 electric)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$10,252 saving $6,895 saving
Cost Analysis

Start up costs
• Research and development costs
• Initial training of staff
• Facility and property costs
• Office equipment and furniture
• Legal fees

O&M Costs
• Wages and Benefits
• Parts and Shipping for kits
• Advertising
• Utilities
• Office Maintenance
Potential sources of cash include:

- Sales
- Fundraising and grants
- Investors
- Customers
Staffing

- Assembly and installation
 - Troubleshooting
 - Quality Control

- Executive Staff
 - Marketing Team

- Support Staff
 - Advisors
 - HR Manager
Partnership and Alliance

Strategic relationships

Partnership
- Illinois Institute of Technology
 - Pooling of resources

Alliance
- Honda Motorwerks
 - A stake in the partner company
 - Cross promotion and expansion of customer base
 - Preferential treatment and mutual referrals
The future of EnPRO 356/Isopomoto

- Complete the cost analysis
- Recyclable parts
- More robust power electronics
- More options for the end-user
 - Same day installations
 - Vehicle Delivery
 - Rental Arrangements
- Vehicle-to-grid integration (V2G)
Acknowledgements

- Sanjaka Wirasingha
- Dr Ali Emadi
- Professor Bob Anderson
- Professor Jim Braband
- Chris Schneider, Honda Motorwerks

Thank You
Questions

www.isopomoto.com