IPRO 341 – Midterm Report
October 20, 2006
IPRO 341 Fall 2006

Students:
Marta Bastrzyk, Jose Hernandez, Tae-Young Kim, Kevin Lerash, Crystal Lybolt, Brandon Seaton, George Skontos, Ty Sopko, Nir Vaks

Faculty Advisor
Prof. Janet Staker Woerner
Outline

- Background
- Collaboration
- Process
- Technical issues
- Societal issues
- Recommendations
- Next steps
- Insight
- Questions
History of Insight

• Fall 2005
 ▪ Researched emerging technologies
 – AI, RFID, Video Games, Internet, Optical Drives, Cell Phones

• Spring 2006
 ▪ Focused on nanotechnology
 • Perceptions of Society
 – Stakeholder Bias
 • Major products currently at market
Objective of IPRO 341

- Collaboration through a distance setting
- Identify technical issues
- Identify and define nanotechnology through self-directed learning
- Understand process involved with emerging technology
- Technical and societal aspects
Fall 2006

• Working with Ball State University
 – Architecture – “Nanostudio” (mix of actors)
 – Process of evaluation with technical and social implications
 • Aesthetics vs. Functionality

• Initially began researching nanotechnology
 – General overview, then specific materials
 – Evaluated individual designs
Individual Groups

- 3-4 people per group
- Each individual group has different materials
- Groups also have different designs and sites
- Materials not necessarily applicable today, but within 25 years
 - However materials must be proved to work in the lab setting
- Communication with BSU (long distance collaboration)
Natural Umbrella House

• Nanowire paper, Quantum Dots and Nano-sensors

• Pro: Movable walls, Responsive Skeleton
• Con: Roof may melt after it rains
Nanoshell House

- Translucent Nanosteel, Carbon nanotube sensors

- Pro: Technology already exists
- Con: Electromagnetic effects
Stretch Building

- Carbon Nanotube envelope, CNT Liquid Crystal Displays

- Pro: Immersive environment
- Con: Taking too many “design liberties”
Stack Building

- Carbon Nanotube Sheets, Quantum Dots

- Pro: Feasibility
- Con: Scientific limitations
Fleischman House

- Carbon nanotubes, Organic Light-emitting Diodes

- Pro: Adaptability to environment
- Con: Structural integrity
Conclusion

• BSU overall designs have questionable feasibility
• Full potential of nanotechnology is yet to be determined
• Further evaluation of Social implications
• Collaboration of tech and non-tech fields
But There Is More...

- Social implications research
 - 5 different categories

<table>
<thead>
<tr>
<th>Material</th>
<th>Education</th>
<th>Society</th>
<th>Construction Market</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recyclable</td>
<td>User</td>
<td>Privacy – hacking</td>
<td>Construction time</td>
<td>How other nations deal with / what regulations do they have?</td>
</tr>
<tr>
<td>Cost-efficiency</td>
<td>Insurance agents</td>
<td>Sabotage / attacks</td>
<td>Material delivery</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>Workers</td>
<td>Religious reactions</td>
<td>Job force / market</td>
<td></td>
</tr>
<tr>
<td>Compatibility</td>
<td>Designers / Engineers</td>
<td>Malfunctions</td>
<td>New hardware / machines needed</td>
<td></td>
</tr>
<tr>
<td>Resourcefulness</td>
<td>Governing body</td>
<td>Responsible parties</td>
<td>Insurance</td>
<td></td>
</tr>
<tr>
<td>Survivability</td>
<td>Requirements</td>
<td>Governing bodies</td>
<td>Test efficiency</td>
<td></td>
</tr>
<tr>
<td>Life-expectancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioactivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Next Steps

• Website plans
• Possible use of case studies
 – Viva Gel, Diamonds, Building issues, Weapons
Insights

• Personal experiences
QUESTIONS?
References

- http://www.vanderbilt.edu
- http://www.sciencedaily.com
- http://www.usatoday.com/money/industries/technology
- http://www.newagediamonds.com/images/atomic_theme.jpg
- http://www.apollodiamond.com
- http://www.cbsnews.com/stories
- http://www.personal.rdg.ac.uk
- http://www.nanotech-now.com
- http://news.naver.com
- http://www.cdc.gov