Objective

Overall Goals
- Create an industry standard for testing and implementing drive thru systems

Immediate Goals
- Create a refined prototype Drive-Thru kiosk
- Analyze common sources of noise in the Drive-Thru environment

Testing

Testing Software:
- LEXSTI: Automated Gaussian Noise and Frequency analysis for STI calculation
- MATLAB: Automated Sync-Note repair for low-STI tests.
- TRUERTA: Octave Band Decibel measurement and Calibration

Major Variables Tested:
- Mic position within kiosk
- Insulation within kiosk
- Omni or Cardioid Microphone Capsules
- Diesel engine interference

Class D Amplifier

Class D audio-amplifiers are highly efficient due to their rapid switching state. At a given moment, a class D amplifier is switched on or off. In these states, the amplifier does not draw energy from the source. Power is used only during the transition periods, thus reducing the total power consumption. This has allowed high power amplifiers to be constructed without the need for a heat sink as well as reduced size. They are desirable to be used within our improved intercom system because they produce excellent sound quality, are low-cost, and energy efficient.

Electronic Circuits

Tests performed by the Circuits & Signal Processing Team
- Redesign of system layout
- Evaluation of electronic upgrades
- Development of the Speech Gate Controller
- Component selection
- Circuit prototyping
- PCB Layout
- Circuit board assembly
- Module-level assembly

Kiosk Design Goals:
- Model the dimensions of the most common Drive-Thru Kiosks
- Modular construction for variation of testing parameters.

Circuit Board

- Signal from Kiosk
- Class D Amp
- Mixer Equilibrator
- Speech Line
- Preamp
- Microphone
- Headset Microphone
- Louderspeaker in facility

Results

- The Cardioid microphone scored a better STI than the omnidirectional microphone in the majority of tests.
- Microphone has higher intelligibility when placed deeper in the cavity.
- Foam insulation decreases intelligibility when microphone is near the front of the kiosk.

Conclusion

- Microphone should be placed well inside the kiosk cavity.
- Cavity should have acoustic foam insulation on all walls.
- Cardioid microphone performs better than omnidirectional microphone in most tests.

Recommendation for Future Development

- More testing needed to verify results
- Test with cheaper insulation alternatives
- Newspaper
- R-19 insulation
- Determine effects of various noise sources on intelligibility with and without equalizations

Acknowledgments

Professor Ralph Mustelien Shure, Inc.

iFidelity - IPRO 344

Audio Quality & Energy Efficiency for Mobile Devices and Intercoms

IPRO Team Members

Jeffrey Agner Alex Barnett Jeffrey Chiles
Tillaha Craig Kevin Gullikson Joel Hurh
Steve Kuo Mohammad Raza Yihan Su
Janoslaw Suwada Alexander Walker
Instructor: Prof. Thomas Wong
Teaching Assistant: Tao Shen

Testing Software:
- LEXSTI: Automated Gaussian Noise and Frequency analysis for STI calculation
- MATLAB: Automated Sync-Note repair for low-STI tests.
- TRUERTA: Octave Band Decibel measurement and Calibration

Major Variables Tested:
- Mic position within kiosk
- Insulation within kiosk
- Omni or Cardioid Microphone Capsules
- Diesel engine interference

Results
- The Cardioid microphone scored a better STI than the omnidirectional microphone in the majority of tests.
- Microphone has higher intelligibility when placed deeper in the cavity.
- Foam insulation decreases intelligibility when microphone is near the front of the kiosk.

Conclusion
- Microphone should be placed well inside the kiosk cavity.
- Cavity should have acoustic foam insulation on all walls.
- Cardioid microphone performs better than omnidirectional microphone in most tests.

Recommendation for Future Development
- More testing needed to verify results.
- Test with cheaper insulation alternatives.
- Newspaper.
- R-19 insulation.
- Determine effects of various noise sources on intelligibility with and without equalizations.

Acknowledgments

Professor Ralph Mustielien Shure, Inc.