IPRO 316

Design of Biofuels Production Facility for Renewable Energy Generation

.....lets not be cruel, use alternative fuel
Objective

- To produce a feasible small-scale chemical reaction process for the production of environmentally-friendly biofuel that meets industrial standards
 - Develop problem solving skills
 - Work as a team to achieve a sizable task
 - Become fluent in using programming software like Matlab and HySys
Problem Statement/Goals

- Identified sponsor a couple of weeks into the semester: Testa Produce
- Who are they and what are they looking for?
- Our goals for Testa Produce
 - Recommend feasible biodiesel production plant
 - Suggest options for transportation of oils and storage
Team Organization

- Final Team Structure
 - Production and Transportation subgroups
- Huge team: 27 members
 - 17 Chemical Engineering Sophomores, 5 seniors
 - Four students in Computer Science, Biology, and Biochemistry fields
- Team values and expectations set early on
 - Attendance
 - Communication
 - Chain of command
Project Importance

- Described as a “Win win win...” by Peter Testa
- Customers (restaurants, hotels and hospitals)
 - Happy to get rid of grease pits
 - Unsanitary & unattractive
 - Can advertise as being “green”

- Testa Produce
 - Meet biodiesel demand for 52 trucks
 - Ability to expand, possibly sell biodiesel
Ethical Issues

- Did not represent ourselves falsely
- Safety and Permits
 - OSHA & EPA
 - Proper methanol storage
 - Biodiesel production
 - Waste water pretreatment
 - Byproduct (glycerol) disposal
- Permission from companies
 - Equipment pictures & details
 - Testa Produce pictures & details
Our Tasks and Methods

Big Picture

Waste Oil Collection → Transportation → Processing

Biodiesel Use and Waste Disposal

- Online research
 - Including preliminary research comparing biodiesel and ethanol
- Communication with Testa Produce including tour of Testa Produce facility
- Email and telephone communication
Transportation Overview

Deliver Produce

Pickup WVO

Warehouse

Processing

Glycerol

Biodiesel

Wastehauler

Water treatment or chemical plant

Deliver produce
Transportation of Waste Oils

- Challenge: Transport produce and waste oil in same truck
- Trucks with separated compartments are expensive
- Brainstorming
 - Containment of waste oil
 - Limited space
 - Spill prevention
Transportation

- Waste Oil Collection
 - Use containers it came in
 - Provide color-coded containers
- Hauling
 - Plastic ‘tub’ on a pallet, 3-4 ft tall
 - Place small 5 gallon containers into tub
- Unloading
 - Pallet with tub easily moved with forklift
 - Oils can be dumped into larger containers
Transportation

- Attached securely to pallet
- Durable material
- Future design...collapsible container
Storage

- Waste Oil
 - Separated by types
- Methanol
 - Flammable
 - Strict storage regulations
 - No electrical equipment allowed in room
- Glycerol
 - Store on-site until bi-weekly or monthly collection
Production Process

1. Reaction: Waste Oil, Methanol, & KOH
2. Settling: Glycerol
3. Washing: Biodiesel, Water + Impurities
4. Drying: Wash Water

Final Product: Glycerol
Production

<table>
<thead>
<tr>
<th>Biodiesel need</th>
<th>1200</th>
<th>gal/week</th>
</tr>
</thead>
<tbody>
<tr>
<td>REACTANTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste oil</td>
<td>1470</td>
<td>gal/week</td>
</tr>
<tr>
<td>Methanol</td>
<td>367.5</td>
<td>gal/week</td>
</tr>
<tr>
<td>KOH (90% pure)</td>
<td>52</td>
<td>gal/week</td>
</tr>
<tr>
<td>PRODUCTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycerol</td>
<td>184</td>
<td>gal/week</td>
</tr>
<tr>
<td>Biodiesel</td>
<td>1654</td>
<td>gal/week</td>
</tr>
</tbody>
</table>

Calculations based on a recipe of 22 vol% Methanol, 78 vol% Waste Oil, and 36 grams KOH/gal Oil.
Production

- 500gal Biodiesel Processor

One batch per day will exceed Testa’s demand.
Glycerol

- Biodiesel production byproduct
 - Current basis: ~200 gallons/week
- Contaminated with methanol & lye
- Best options
 - Transport to water treatment plant
 - Supply to chemical plant next to Testa’s new facility with expertise in glycerol processing to purify and sell
Field Trip

Trucks, vegetables, and high efficiency lights
Future Steps

- Acquiring building permit
- Building the processor
- Training employees
- Experiment in mixing oils
- Conducting restaurant interviews
- Writing a training manual

If a produce company can be LEED certified, what can you do?
Acknowledgements

- Testa Produce, Inc
- Professor Parulekar
- Murphy’s Machines
- Metropolitan Water Reclamation District of Greater Chicago
Questions/Comments?