IPRO 303

Failure Prediction Modeling of Power Plant Emission Control Systems
Students
Insiyah Aratsu
David Belanger
John Bouikidis
Zachary Capps
Cari Hesser

Sean Irish
Satyam Kaneria
Brett McQuillan
Lavesh Mohinani
Jay Patel

Advisor
Edmund Feldy

Sponsor
SmartSignal
Presentation Outline

- Project Sponsor
- Goals and Objectives
- Ethics
- Team Development
- Summary of Results
- Obstacles and Resolutions
- Conclusions and Achievements
- Recommendations
- Acknowledgements
Project Sponsor

- SmartSignal
 - Failure Prediction Modeling
 - Power Plant Generation
 - Expand to Emission Controls
 - David Farrell, Product Manager

http://www.smartsignal.com
Goals and Objectives

- Regulations
- Emission Control Systems
- Failures and Degradation
- Instrumentation
- Detection of Failures
Ethics

• Confidentiality
• Team Contribution
• Team Diversity
• Perspectives
 – Seven Layers of Integrity
 – Ethics, It’s Good Business
 – Professional Engineering Code of Ethics
Team Development

- Group Consensus
- Volunteer
- Subgroups
- Team Leader
Team Structure

Research
- Wet Scrubbers
 - Insiyah Aratsu
 - John Bouikidis
 - Brett McQuillan
 - Jay Patel
- ESPs Baghouses
 - Zachary Capps
- SCRs
 - Dave Belanger
- Power Plant Contact
 - Insiyah Aratsu
 - Dave Belanger
 - John Bouikidis
 - Zachary Capps

Presentation
- Poster Brochure
 - Insiyah Aratsu
 - Sean Irish
 - Jay Patel
- Final Report
 - John Bouikidis
 - Zachary Capps
 - Brett McQuillan
 - Satyam Kaneria
 - Cari Hesser
- Final Presentation
 - Insiyah Aratsu
 - Dave Belanger
 - Lavesh Mohinani
 - Sean Irish

Team Development
Results

Electrostatic Precipitators
Baghouses
Selective Catalytic Reducers
Wet-Scrubbers

Overview
Instrumentation and Failures
Regulations
Electrostatic Precipitators Overview

- Ionization
- Migration
- Collection
- Charge Dissipation
- Particle Dislodging and Removal
Instrumentation and Failures

- **Instrumentation**
 - Primary and Secondary Voltages
 - Current sparks and Arcs per minute
 - Power input and output
 - Actual conditions versus programmed
 - Current parameters versus transformer ratings

- **Failures**
 - Broken Electrodes
 - Back Corona
 - Relatively low Input voltage
 - Inadequate rapping
 - Sparking
Regulations

• Federal Laws
 – Clean Air Mercury Rule
 – Where we currently stand?
• State Laws
 – Connecticut first state to pass regulations on mercury emissions
Baghouses Overview

- Three Types of Baghouses
 - Mechanical Shaker
 - Reverse Air
 - Reverse Jet

Image courtesy: http://www.hvacqld.com
Instrumentation & Failures

- Pressure Drop
- Fire
- Exiting air too opaque
Regulations

- Same as Electrostatic Precipitators
- Federal Laws
 - Clean Air Mercury Rule
 - Where we currently stand
- State Laws
 - Connecticut first state to pass regulations on mercury emissions
Selective Catalytic Reducers Overview

- Injection of Ammonia
- Mixing of polluted air and Ammonia
- Reaction across catalyst surface

http://en.wikipedia.org/wiki/Selective_catalytic_reduction
Instrumentation and Failures

- Instrumentation
 - Temperature
 - Ammonia Slip

- Failures
 - Catalyst Deactivation
 - Catalyst Deterioration
 - Ammonia Slip
 - Mechanical Issues

Selective Catalytic Reducers

www.cpsc.gov
www.sensidyne.com
http://fossil.energy.gov/programs/powersystems/p
NOx Regulations

- Federal Laws
 - Clean Air Act
 - 1990 Acid Rain Program
- State Laws
 - “Ozone Season”
 - May 1–September 30

http://www.traxcorp.com/scrregs.html

<table>
<thead>
<tr>
<th></th>
<th>Phase I NOx emissions (lbs/MMBtu)</th>
<th>Phase II NOx emissions (lbs/MMBtu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Effective January 1, 1996</td>
<td>Effective January 1, 1996</td>
</tr>
<tr>
<td>Dry-Bottom Wall-Fired</td>
<td>0.5</td>
<td>0.46</td>
</tr>
<tr>
<td>Tangentially Fired</td>
<td>0.45</td>
<td>0.4</td>
</tr>
<tr>
<td>Wet-Bottom Wall-Fired</td>
<td>Not Applicable</td>
<td>0.84</td>
</tr>
<tr>
<td>Cyclone-Fired</td>
<td>NA</td>
<td>0.86</td>
</tr>
<tr>
<td>Vertically Fired</td>
<td>NA</td>
<td>0.8</td>
</tr>
<tr>
<td>Cell Burner</td>
<td>NA</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Selective Catalytic Reducers
Wet Scrubbers Overview

• Pollution Control Technology
 – Removes SOx, Fly Ash, and pollutants from gas streams
 – Capture pollutants through liquid droplets

• Scrubbing Liquid
 – Spraying
 – Pool of liquid
 – Other methods
Instrumentation and Failures

- Pressure Gauge (gas flow)
- Pressure Gauge (nozzle line)
- Temperature Monitor
- pH Probe
- Humidity Sensor
- Vibration/Acoustic Monitors

Wet Scrubbers
SOx Regulations

- Federal Laws (EPA)
 - The level of the annual standard is 0.030 parts per million (ppm), not to be exceeded in a calendar year.
 - The level of the 24-hour standard is 0.14 parts per million (ppm), not to be exceeded more than once per calendar year.
Obstacles and Resolutions

• Initial Organization
 – Team Leader

• Contacts
 – Aggressive Calling/Other Sources

• Ethical Issues
 – Ethics Discussion

• Lack of Information
 – Documentation and Teamwork
Problem Solving Techniques

- Background information
- Review
- Interviews/First-Hand Experience
- Review and Analysis
- Filling in the Gaps
Conclusions and Achievements

- Failure Indication Charts
- Contacts Lists
- Instrumentation Varies
- Electrostatic Precipitators
- Baghouses
- Selective Catalytic Reducers
- Wet Scrubbers
- Other Control Techniques Used
Recommendations

- Power Plants
 “Inundated with Information”
- SmartSignal Technology
- Improve Power Plant Maintenance
- Save Industry Money
Acknowledgments

SmartSignal
IPRO and Illinois Institute of Technology
Midwest Generation
We Energies
Edmund Feldy
Professor Clack
Professor Noll
Questions