BACKGROUND

- IPRO started in spring on 2006 to develop assistive technology for BVI individuals
- Rose Hulman and Notre Dame also pursued similar projects
- Fall 2008 semester modified Notre Dame’s initial passive device and constructed a new lightweight storage device
- Fall 2008 also decided to pursue invisible fence & sonar technology applications
- Previous designs neglected the inclusion of the BVI community; the fall 2008 semester created and administered a user-needs survey at the Chicago Lighthouse for the Blind

OBJECTIVES

- Promote independence of BVI individuals
- Ensure device allows for a low profile during exercise
- Test the applications of sonar, invisible fence and laser technologies
- Include the BVI community in the design process using surveys, interviews, outreach group facility visits and feedback
- Identify and obtain consent from a facility for long terming of the passive device
- Develop user and staff surveys and consent forms for the passive device testing
- Develop and administer user needs survey to reference when developing assistive devices.

SURVEY RESULTS

<table>
<thead>
<tr>
<th>Device Location</th>
<th>Alert Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chart 1</td>
<td>Chart 2</td>
</tr>
<tr>
<td>- Other: 22%</td>
<td>- Vibration: 71%</td>
</tr>
<tr>
<td>- Cap: 16%</td>
<td>- Tone: 24%</td>
</tr>
<tr>
<td>- Goggles: 16%</td>
<td>- Vibration: 45%</td>
</tr>
<tr>
<td>- Wrist Band: 40%</td>
<td>- Tone: 24%</td>
</tr>
<tr>
<td>- Shoulder: 18%</td>
<td>- Vibration: 45%</td>
</tr>
</tbody>
</table>

- Surveyed BVI individuals preferred a low-profile wristband device
- Nearly one half of responses indicated a preference for a vibration over audio

| Chart 3: Popularity of the $100+ price choice may be due to the opportunity for financial assistance |
| Chart 4: All device features were highly ranked, but ease of use and alert type ranked as the most important features |

MEDIA

- Network with the BVI community; allow for the outreach and receipt of ideas and progress
- Makes the user-needs and passive device surveys more assessable to a larger community, increasing their amount of influence and feedback

OUTREACH

PASSIVE DEVICE

- The passive device is a mechanical apparatus that provides tactile feedback alerting the swimmer of the sides of the lane and ends of the pool.
- Long term testing of the passive device is scheduled with the Wisconsin Center For the Blind and Visually Impaired
- User surveys for the passive device for both swimmers and staff members have been written and approved by the IRB and will be administered by the Wisconsin Center during testing in the Summer 2009 term.

NEXT STEPS

- Maintain involvement with the BVI community
- Ensure website is accessible to entire BVI community
- Load both passive device surveys and user needs survey on website
- Promote documentation for future IPRO teams to ensure continuity

ACKNOWLEDGMENTS

- IPRO 310
- The Chicago Lighthouse
Designing and Building Prototypes for Assisting Blind and Visually Impaired Swimmers

Description:
Sonar includes a transmitter that emits sound waves that bounce of obstacles and a receiver that interprets the distance of the obstacles based on the time between transmission and receipt.

Results:
1. **Obstruction Distance Test**
 - Detection range: 4.5 ft
 - Angle: 1 sensor: 10 degrees
 - 4 sensors: 120 degrees
 - Conclusion: This device needs major modifications to increase the range of this device.

2. **Obstruction Size Test**
 - Human, notebook, broom handle and roll of duct tape were detected
 - The size of the obstacles are all detectable with the sonar device above water.

3. **Air to water test**
 - The parking sensor detected the water surface as an object
 - This specific sonar device was intended solely for air use, and was not built for underwater.

Conclusions:
- Need a transducer made for underwater use, so that propagated waves penetrate the water.
- Question further development due to cost.

NEXT STEPS
- Design a method of alerting user to the difference between left lane, right lane, and end of the pool.
- Incorporate the receiver into swim wear to maintain a low profile.
- Waterproof the receiver and the transmitter.
- Develop a working prototype
- Test cue conflict theory and its effect on disorientation
- Involve faculty experts in the testing of communication and application

INVISIBLE FENCE
- A transmitter sends a signal through a wire to create a magnetic field that can be detected by a concealed receiver.

Description:
Create a boundary using laser alarms to alert the user when they are out of the specified boundary.

Future Applications:
- Create a system for alerting the user when a beam is interrupted
- Design end switches to change left and right lane alert signals
- Build supports to hold the laser beams and detectors

ACKNOWLEDGMENTS
Illinois Institute of Technology
Professor Jafar Saniee
Professor Thomas Wong
Professor Al Glodowski