Traditional Hooks

- Snag easily
- Cause injury
- Failure to catch and hold fish
TECHNOLOGY

Standard Mode

DELTA
HOOK TECHNOLOGY

Engage Mode
TECHNOLOGY OPERATION

1

2

3

Enpro 358
Team Structure

Team Leader: Shaad Zaidi

Business Team Leader:
Michael Sowards

Team Members:
Phillip Lozanowski
Shaad Zaidi
William O’Toole
Kyuho Shin

Product Team Leaders:
Alyssa Walther
Lucas Rodgers

Team Members:
Nathan Howard
Mathew Bednarz
Joseph Cicero
Bryan Benjamin
Westley Villabos
Andrew Bonesz
PRODUCT TEAM
Mock-Ups

Mock-up A
Sponsor Material
- Shank made from steel cable
- Movement is random / multi-directional
- Two piece design

Mock-up B
Sponsor Material
- Shank made from flat steel
- Movement is planar
- Two piece Design/ soldered connection

Mock-up C
Summer ’09
- Shank made from flat steel
- Two piece Design/
- Epoxy connection / bulky

Mock-up D
Fall ’09
- One piece design
- Flattened shank
- Planar motion

Enpro 358
Failure Analysis

Out of plane

Planar motion
Mock-Ups

Mock - up A
Sponsor Material
- Shank made from steel cable
- Movement is random / multi-directional
- Two piece design

Mock - up B
Sponsor Material
- Shank made from flat steel
- Movement is planar
- Two piece Design/
- Soldered connection

Mock - up C
Summer ‘09
- Shank made from flat steel
- Two piece Design/
- Epoxy connection / bulky

Mock - up D
Fall ‘09
- One piece design
- Flattened shank
- Planar motion

Enpro 358
DELTA Hook Technology
Design Requirements

- 2 - Flexible shaft
- 3 - Rigid arm and engaged section
- 4 - Acute angle
- Sharp hook point
- Corrosion resistant
Material Selection

- Properties
 - Flexible
 - High Tensile Strength
 - Corrosion Resistant
 - Cost Effective

- Materials
 - 1008 Steel (0.08% carbon content)
 - 1080 Spring Steel (0.80% carbon content)
 - Custom Alloys (silicon, molybdenum, vanadium)
Manufacturing

Step 1: Part 1 bent to create eye of hook

Enpro 358
Heat Treating
Tensile Testing

Enpro 358
Test Results

<table>
<thead>
<tr>
<th>Name</th>
<th>Shank Shape</th>
<th>Category</th>
<th>Chord Length</th>
<th>Wire Diameter</th>
<th>Max Load (lbf)</th>
<th>Mode of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trokar J</td>
<td>Standard</td>
<td>2</td>
<td>1.09375</td>
<td>0.0602</td>
<td>44.64</td>
<td>Bend 90</td>
</tr>
<tr>
<td>500C Sample 3</td>
<td>Standard</td>
<td>2</td>
<td>1.09375</td>
<td>0.0602</td>
<td>37.46</td>
<td>Bend 90</td>
</tr>
<tr>
<td>500C Sample 4</td>
<td>Flattened</td>
<td>2</td>
<td>1.4375</td>
<td>0.0441</td>
<td>35.62</td>
<td>Bend 90</td>
</tr>
<tr>
<td>500C Sample 5</td>
<td>Flattened</td>
<td>2</td>
<td>1.34375</td>
<td>0.0441</td>
<td>33.43</td>
<td>Bend 90</td>
</tr>
<tr>
<td>Gamakatsu Worm Eye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33.4</td>
<td>Bend 90</td>
</tr>
<tr>
<td>Bass Pro Worm Hook</td>
<td></td>
<td></td>
<td></td>
<td>0.0747</td>
<td>29.67</td>
<td>Bend 90</td>
</tr>
<tr>
<td>500C Sample 1</td>
<td>Standard</td>
<td>3</td>
<td>1.03125</td>
<td>0.0747</td>
<td>25.19</td>
<td>Bend 90</td>
</tr>
<tr>
<td>500C Sample 2</td>
<td>Flattened</td>
<td>3</td>
<td>1.125</td>
<td>0.0747</td>
<td>13.13</td>
<td>None (slip from vise)</td>
</tr>
<tr>
<td>300C Sample 2</td>
<td>Standard</td>
<td>3</td>
<td>1.09375</td>
<td>0.0441</td>
<td>11.93</td>
<td>Fracture</td>
</tr>
<tr>
<td>300C Sample 1</td>
<td>Flattened</td>
<td>2</td>
<td>1.34375</td>
<td>0.0441</td>
<td>11.41</td>
<td>Fracture</td>
</tr>
<tr>
<td>U-Clamp</td>
<td></td>
<td></td>
<td></td>
<td>0.0394</td>
<td>6.76</td>
<td></td>
</tr>
</tbody>
</table>
Contacts

• Arcelor Mittal – Steel Production
 – Material selection
 – Custom alloy creation
 – Computer simulations of materials
 – Metallurgist guidance

• Master Wire and Spring – Wire Bender
 – Chicago company
 – Highly advanced automated wire bending
 – No minimum order size
 – Produce hooks for testing
Future

• Identify ways to produce inhomogeneous properties
• Finalize material selection and schematic design
• Continue to establish manufacturing contacts
 – Master Spring and Wire Form Co.
 – Arcelor Mittal
• Complete testing series
• Produce 10,000 - 100,000 units
• Unveil at ICAST 2010
Business Team
Business Team Objectives

- Create a profitable Business Model
- Support with business plan
 - Market Analysis
 - Financial Analysis
 - Competitor Analysis
 - Manufacturing Strategy
 - Packaging & Distribution Strategy
 - ICAST
Market Analysis

Accomplishments
- Surveys
- SWOT

Set Backs
- Turned from local retailers for Surveys
- No incentives to take surveys
Manufacturing

Accomplishments
- Master Spring
- Arcelor Mittal

Set Backs
- Competitive Rates
- Time Frame
- Reluctant to help small ventures
Packaging & Distribution

Accomplishments
- Sigma Services

Set Backs
- Alternative Option
• The International Convention of Allied Sportfishing Trades
• Las Vegas
• July 14-16
• Attendants (7,400 in 2009)
End Result

- Final Business Plan
- Manufacturing Strategy
- Supply Chain
- Showcasing at ICAST 2010
Questions
Finite Element Analysis (FEA)

PRESSURE (Mpa)
- 500 Mpa
- 480 Mpa
- 460 Mpa
- 440 Mpa
- 420 Mpa
- 400 Mpa
- 380 Mpa
- 360 Mpa
- 340 Mpa
- 320 Mpa

STRESS CONCENTRATION

Applied Load: 200N

Enpro 358