Features

Standard Treble
- Three exposed prongs
- Barbed
- Inflexible

Delta Hook
- Three concealed prongs
- Barbless
- Flexible

ENPRO 358
DHT Mechanical Requirements

STRENGTH

FLEXIBILITY

ENPRO 358
Non-Planar Motion

Weak

Bulky

ENPRO 358
TESTING: Unbending
Commercial Test Results

Brand Hook vs. Max Load

<table>
<thead>
<tr>
<th>Hook Type</th>
<th>Max Load [lbf]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eagle Claw Aberdeen</td>
<td>20</td>
</tr>
<tr>
<td>Eagle Claw Baitholder</td>
<td>40</td>
</tr>
<tr>
<td>Eagle Claw Lazer Sharp</td>
<td>20</td>
</tr>
<tr>
<td>Eagle Claw Lazer Sharp Treble</td>
<td>30</td>
</tr>
<tr>
<td>Tru Turn</td>
<td>25</td>
</tr>
</tbody>
</table>
MATERIAL ANALYSIS: Elemental Composition

SCANNING ELECTRON MICROSCOPE

Steel

Brass

ENPRO 358

DELTA

HOOK TECHNOLOGY
Commercial Testing Results
HOOK FORMATION

BENDING
Non-Galvanized Black Wrought Iron Pipe

NORMALIZING

Crushed Charcoal

Final Bent Hook

ENPRO 358

DELTA HOOK TECHNOLOGY
STRENGTHENING

ENPRO 358

DELTA HOOK TECHNOLOGY
Meeting the Standard

Brand Hook vs. Max Load

Max Load [lbf]

- Eagle Claw Aberdeen
- Eagle Claw Baitholder
- Eagle Claw Lazer Sharp
- Eagle Claw Lazer Sharp Treble
- Tru Turn
- DHT

ENPRO 358
FLEXIBILITY

Out of Plane
In Plane

ENPRO 358
FINAL MOCK-UPS

ENPRO 358
Market Demographics

• International market

• Terminal Tackle Sales $399 million
• Lures and Artificial Baits $905 million
• Total Market $1.3 billion

Delta Hook Varieties

• Delta Hook Product Lines
 – Pro
 – Family
 – Memento

• Marketing to each Segment (Penetration)
Sales by Segment

• Sparrowhawk Pro
 – Year 1: $585,000
 – Year 2: $730,000
 – Year 3: $915,000

• Sparrowhawk Family
 – Year 1: $65,000
 – Year 2: $81,000
 – Year 3: 102, 000

Who do you fish with

- Adults 44%
- Both 48%
- Children 3%
- Neither 5%

n=150
Mock-Up Costs

<table>
<thead>
<tr>
<th>Features</th>
<th>1080</th>
<th>Ti-6al-4v</th>
<th>Ball 1080</th>
<th>Ball TI-64</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire</td>
<td>0.024</td>
<td>0.720</td>
<td>0.024</td>
<td>0.720</td>
<td>0.090</td>
</tr>
<tr>
<td>Brass Crimping</td>
<td>0.042</td>
<td>0.042</td>
<td>0.000</td>
<td>0.083</td>
<td>0.042</td>
</tr>
<tr>
<td>Rubber ball</td>
<td>0.000</td>
<td>0.000</td>
<td>0.250</td>
<td>0.250</td>
<td>0.000</td>
</tr>
<tr>
<td>Cost</td>
<td>0.0655</td>
<td>0.7615</td>
<td>0.274</td>
<td>1.053</td>
<td>0.1315</td>
</tr>
</tbody>
</table>
Corporate Profitability

- **Revenue**
 - Year 1: $650,000
 - Year 2: $725,000
 - Year 3: $1,000,200

- **Profit/Year**
- **Net Profit/Sales**
 - Year 1: $115,500 17.77%
 - Year 2: $159,950 19.72%
 - Year 3: $211,085 20.76%

ENPRO 358
Sparrowhawk

<table>
<thead>
<tr>
<th>Year</th>
<th>Revenue</th>
<th>Profit</th>
<th>NetProfit/Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>$650,000</td>
<td>$115,500</td>
<td>17.77%</td>
</tr>
<tr>
<td>Year 2</td>
<td>$812,500</td>
<td>$159,950</td>
<td>19.72%</td>
</tr>
<tr>
<td>Year 3</td>
<td>$1,017,000</td>
<td>$211,085</td>
<td>20.76%</td>
</tr>
</tbody>
</table>
Exit Strategy

• Acquisition Target
• Value generators
Strategic Advantages

• Manufacturing Contracts
• Sophisticated Marketing
 – Spokesman
 – Strategic partnerships (SOG knives, tournament sponsorship)
Patent

- Utility patent pending
- Application published 18 months after filing (June 18th, 2009)
- Prosecution by Brinks, Hofer, Gilson & Lione of Chicago
Acknowledgements

- Craig Johnson
- Sheldon Mostovoy, Ph.D
- Russ Janota
- Phil Nash, Ph.D
- MMAE Graduate Students
Thank You
Appendix

• Test Data
• Chart
• Finite element analysis
• Delta Hook Design
• Microstructure
<table>
<thead>
<tr>
<th>Name</th>
<th>Shank Shape</th>
<th>Category</th>
<th>Chord Length</th>
<th>Wire Diameter</th>
<th>Max Load (lbf)</th>
<th>Mode of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trokar J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0602</td>
<td>44.64 Bend 90</td>
</tr>
<tr>
<td>500C Sample 3</td>
<td>Standard</td>
<td>2</td>
<td>1.09375</td>
<td>0.0441</td>
<td>37.46</td>
<td>Bend 90</td>
</tr>
<tr>
<td>500C Sample 4</td>
<td>Flattened</td>
<td>2</td>
<td>1.4375</td>
<td>0.0441</td>
<td>35.62</td>
<td>Bend 90</td>
</tr>
<tr>
<td>500C Sample 5</td>
<td>Flattened</td>
<td>2</td>
<td>1.34375</td>
<td>0.044</td>
<td>33.43</td>
<td>Bend 90</td>
</tr>
<tr>
<td>Gamakatsu Worm Eye</td>
<td></td>
<td></td>
<td></td>
<td>0.042</td>
<td>33.4</td>
<td>Bend 90</td>
</tr>
<tr>
<td>Bass Pro Worm Hook</td>
<td></td>
<td></td>
<td></td>
<td>0.0747</td>
<td>29.67</td>
<td>Bend 90</td>
</tr>
<tr>
<td>500C Sample 1</td>
<td>Standard</td>
<td>3</td>
<td>1.03125</td>
<td>0.0454</td>
<td>25.19</td>
<td>Bend 90</td>
</tr>
<tr>
<td>500C Sample 2</td>
<td>Flattened</td>
<td>3</td>
<td>1.125</td>
<td>0.0404</td>
<td>13.13</td>
<td>None (slip from vise)</td>
</tr>
<tr>
<td>300C Sample 2</td>
<td>Standard</td>
<td>3</td>
<td></td>
<td>0.044</td>
<td>11.93</td>
<td>Fracture</td>
</tr>
<tr>
<td>300C Sample 1</td>
<td>Flattened</td>
<td>2</td>
<td></td>
<td>0.0449</td>
<td>11.41</td>
<td>Fracture</td>
</tr>
<tr>
<td>U-Clamp</td>
<td></td>
<td></td>
<td></td>
<td>0.0394</td>
<td>6.76</td>
<td></td>
</tr>
</tbody>
</table>
TESTING
Appendix A-2

ENPRO 358
Finite Element Analysis - FEM

Appendix B

PRESSURE (Mpa)

- 500 Mpa
- 480 Mpa
- 460 Mpa
- 440 Mpa
- 420 Mpa
- 400 Mpa
- 380 Mpa
- 360 Mpa
- 340 Mpa
- 320 Mpa

STRESS CONCENTRATION

Applied Load: 200N

Enpro 358
EnPRO 358 Plan

SparrowHawk

EnPRO 358

Business Team
Business Plan
Market Research

Product Team
Prototype
Testing/Development
DESIGN

1 - Eye
2 - Flexible shaft
3 - Rigid arm and engaged section
4 - Acute angle
 Sharp hook point
 Corrosion resistant

ENPRO 358
MATERIAL ANALYSIS: Microstructure
SCANNING ELECTRON MICROSCOPE

ENPRO 358
Cost

<table>
<thead>
<tr>
<th>Material</th>
<th>Cost</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel wire</td>
<td>0.003</td>
<td>$/in</td>
<td>http://www.mcmaster.com/#9666k33/=6s0yax</td>
</tr>
<tr>
<td>Ti-64</td>
<td>0.09</td>
<td>$/in</td>
<td>TI is 30 times more expensive per ton</td>
</tr>
<tr>
<td>Brass</td>
<td>0.083</td>
<td>$/ft</td>
<td>http://www.mcmaster.com/#brass/=6s0zfe</td>
</tr>
<tr>
<td>Rubber ball</td>
<td>0.25</td>
<td>$/ball</td>
<td>$.52 per ball from McMaster $.04 for raw rubber so I split the difference</td>
</tr>
</tbody>
</table>
Cost

<table>
<thead>
<tr>
<th>Features</th>
<th>Units</th>
<th>108 Ti-6al-4v</th>
<th>Ball 1080</th>
<th>Ball Ti-64</th>
<th>Sprin</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire</td>
<td>in</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>30 spring assume .35” diam coil and 20 coils</td>
</tr>
<tr>
<td>Brass Crimping</td>
<td>in</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Rubber ball</td>
<td>unit</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Corrosion resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ignore cost probably less than the accuracy of this exercise</td>
</tr>
</tbody>
</table>