The 21st Century Farm
Illinois Institute of Technology
Chicago, IL

Professor: Blake Davis
Sponsor: John Edel & Kristin Ostberg of The Plant, LLC

Team Members:

Mohammad Al-Sabah
Regine Antenor
Adrien Binet
Dawid Broda
Jacob Davis
Alexander Derdelakos
Joseph Millham
Jannette Ochoa

Indira Oraziman
Zachary Phillips
Michael Gubser
Fernando Guerrero
Katarzyna Handzel
Hyeon Im
William Kling
Frank Lockom
Michael Schmidt

Ivan Silvestre
Claire Simmonds
Jake Skaggs
Konrad Sobon
Philip Speroff
Ralitza Todorova
Travis Valmores
Alexander Wiff
Where does Chicago get fresh produce in January?
• California - 2,200 miles

• Arizona - 1,800 miles

• Chile – 5,300 miles
Wouldn’t it be nice to have...

• Fresh local produce all winter

• Local growing season extended 3 months

• Zero waste farming
Indoor Farming

- Controlled Environment
- No Chemical Treatment
- Fresher, Healthier Product
- Local Economic Boost
- Aid Regional Agriculture Stability
The Plant, LLC

• Indoor Farm
 • 100,000 sq. ft.
 3 story building
 3 acres
• 50% farming operation

Our sponsors: John Edel & Kristin Ostberg, Chicago Center for Sustainable Manufacturing
The Team

• 25 students, 4 sub-teams, 8 disciplines

Our Mission:
Make The Plant a Reality

• Agricultural systems
• Computer Control
• Building systems
• Marketing
Agricultural Systems

• Explore growing systems
• Expand prototype
• Introduce fish into Aquaponics system
• Monitor system performance
Aquaponics System

- Light source
- Growing bed
- Fish tank
- O₂
Aquaponics System

Tilapia tank

Growing beds

Chicago High School for Agricultural Sciences
Aeroponics System
Aeroponics System
Drip System
Computer Control Team

• View/change environment variables
• Minimize maintenance of farm
• Gather operational data
• Integrate with building systems
This Semester

• Prototype the control system
 • Lights
 • Air temperature thermostat
 • Water temperature
 • Grow logs
 • Operations database
Progress

Previous Semester

Research similar systems

Architectural layout

Choose implementation platform

This Semester

Implement protocol

Server backend

Embedded system farm automation

GUI

Installation
Building Systems

- Wall construction design
 - Affordable
 - Sustainable
 - Volunteer friendly
- Lighting analysis
- Energy management analysis
Straw Bale Walls

5/8" GYP. BOARD
FIRE PROOF STRAW BALE
VAPOR BARRIER
1" AIR GAP
2X2 WOOD STUD
SLAB ON GRADE
Combined Heat & Power System

- **Water** → Heat Recovery Unit → Steam or Hot Water → Cooling/Heating
- **Fuel** → Engine or Turbine → Generator → Electricity → Building or Facility, Grid
Lighting Systems

Metal Halide

Luxim Plasma

T5 High-Output Fluorescent
Marketing Team

- Double-check and expand the previous semester’s work.
 - Lighting
 - Wholesale information
- Create a business plan for The Plant
 - Examine areas of interest to the sponsor concerning the business plan.
- Determine the cost of the growing systems
Viability Check

- Initial production: 18.5k lbs/year
- Initial construction costs paid in 5 years

Estimated Payback Time

![Graph showing payback time with Projected Revenues, Construction Debt, and their linear approximations over the years 2011 to 2014.](image-url)
Potential Markets

• Chicago Public Schools
 • Require 20% of all served food to be locally grown or produced.

• Restaurants

• Community Supported Agriculture (CSA) farms
Accomplishments

• Completed Aquaponics prototype
• Implemented and installed control system
• Developed wall and lighting systems
• Created marketing plan
The Next Step

• Moving and expanding the prototype into The Plant
• Continue exploring different growing systems
• Increase capabilities of control system
• Comprehensive evaluation of The Plant's existing building systems
• Create complete business model
Questions ?
<table>
<thead>
<tr>
<th>Lamp Type</th>
<th>Vendor & Manufacturer Provided Information</th>
<th>Coverage Calculations (per fixture)</th>
<th>Annual Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5 HO</td>
<td>54</td>
<td>216</td>
<td>14,400</td>
</tr>
<tr>
<td>MH Horizontal</td>
<td>1000</td>
<td>1,075</td>
<td>45,630</td>
</tr>
<tr>
<td>MH Horizontal</td>
<td>250</td>
<td>269</td>
<td>8,970</td>
</tr>
<tr>
<td>Luxim Plasma</td>
<td>200</td>
<td>266</td>
<td>17,595</td>
</tr>
<tr>
<td>MH Horizontal</td>
<td>400</td>
<td>430</td>
<td>15,600</td>
</tr>
</tbody>
</table>
Straw Bale Cost Estimating

- 7’ x 14’ x (76 bays) = 7448 square feet total area to be insulated (excluding the glazed area)

- Straw Bale Size: 18“ x 14“ x 36” to 24“ x 18“ x 48”

- Therefore, If using the smaller bales (18” x 14” x 36”) horizontally so that it covers an area of 36”(L) x 14”(H) x 18”(D), the area covered by a single bale would be 3.5 square feet and a total of 2128 bales costing approximately $8512 would be needed to cover the total area of the wall surface.

- If we use the smaller bales vertically so that it covers an area of 36”(L) x 18”(H) x 14” (D), the area covered by a single bale would be 4.5 square feet and a total of 1655 bales costing approximately $6620 would be needed to cover the total area of the wall surface.

- If using the larger bales (24” x 18” x 48”) horizontally so that it covers an area of 48”(L) x 18”(H) x 24”(D), the area covered by a single bale would be 6 square feet and a total of 1242 bales costing approximately $4965 would be needed to cover the total area of the wall surface.
Jeans Insulation
Production Assumptions

<table>
<thead>
<tr>
<th></th>
<th>lbs/sf/yr</th>
<th>$/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Mushroom Crops (Retail)</td>
<td>2.27</td>
<td>$4.04</td>
</tr>
<tr>
<td>Non-Mushroom Crops (Wholesale)</td>
<td>2.27</td>
<td>$1.86</td>
</tr>
<tr>
<td>Mushrooms (Wholesale)</td>
<td>10.95</td>
<td>$4.17</td>
</tr>
<tr>
<td>Tilapia (Restaurant)</td>
<td>1.4</td>
<td>$7.39</td>
</tr>
</tbody>
</table>
Production/Distribution Schedule

<table>
<thead>
<tr>
<th>Year</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Bays</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Sqft. of Growing Beds</td>
<td>4320</td>
<td>4320</td>
<td>4320</td>
<td>5040</td>
</tr>
<tr>
<td>Pounds of Product</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Non-Mushroom Crops (Retail)</td>
<td>6374</td>
<td>6374</td>
<td>6374</td>
<td>6864</td>
</tr>
<tr>
<td>-Non-Mushroom (Wholesale) Crops</td>
<td>2452</td>
<td>2452</td>
<td>2452</td>
<td>3432</td>
</tr>
<tr>
<td>-Mushrooms (Wholesale)</td>
<td>4730</td>
<td>4730</td>
<td>4730</td>
<td>5519</td>
</tr>
<tr>
<td># of Fish</td>
<td>4899</td>
<td>4899</td>
<td>4899</td>
<td>5715.36</td>
</tr>
</tbody>
</table>
Farm Operating Projections

<table>
<thead>
<tr>
<th>Year</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Bays</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Gross Potential Revenue</td>
<td>$79,430.63</td>
<td>$79,430.63</td>
<td>$92,669.07</td>
<td>$91,422.02</td>
</tr>
<tr>
<td>Shrinkage Loss(%)</td>
<td>25.00%</td>
<td>23.00%</td>
<td>21.00%</td>
<td>19.00%</td>
</tr>
<tr>
<td>Effective Gross Revenue</td>
<td>$59,572.97</td>
<td>$61,161.59</td>
<td>$73,208.56</td>
<td>$74,051.84</td>
</tr>
<tr>
<td>Cost of Operations</td>
<td>$53,688.00</td>
<td>$53,688.00</td>
<td>$60,636.00</td>
<td>$63,478.40</td>
</tr>
<tr>
<td>-Initial Buildout</td>
<td>$64,493.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Buildout on Farm Revenues</td>
<td></td>
<td>$10,147.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Farm Operating Revenue</td>
<td>$5,884.97</td>
<td>$13,358.56</td>
<td>$15,784.12</td>
<td>$26,357.56</td>
</tr>
</tbody>
</table>