Team Members
Alexander Derdelakos
Kyle Gillmeister
Francis Gotanco
Robert Hill
Amar Rana
Jon Perry
Mike Sullins

Advisors
Dr. S. Mostovoy
Prof. W. Maurer

Sponsor
FINKL
A. FINKL & SONS CO.
The Problem

Goals

- Founded 1879
- Processes 100,000 tons of steel annually
- Manufactures 100% of steel in Chicago
- Distributes to 18 countries around the world
- Steel Processes include:
 - Melting
 - Re-melting
 - Forging
 - Heat Treating
 - Machining

Organization

- A. Finkl & Sons Co., Chicago, IL
- Founded 1879
- Processes 100,000 tons of steel annually
- Manufactures 100% of steel in Chicago
- Distributes to 18 countries around the world
- Steel Processes include:
 - Melting
 - Re-melting
 - Forging
 - Heat Treating
 - Machining

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps
The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

Milling

- Typically the last stage of processing before distribution
- Smoothing and Finishing
- Multi-Million dollar annual process

Milling Machine

- 100+ year old process
- 18” Diameter milling head
- 18 Tungsten carbide inserts per machine
The Problem

Operational Problems

- **Broken Inserts**
- **Multi-Million dollar problem**
- Causes stress to machine and other inserts furthering damage
- Damages finish resulting in re-milling and time loss

Goals

- Operational Problems

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps
The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

Detect and Notify

- Build on previous semesters work
 - Use of accelerometers and data acquisition software (labView) to detect failure
 - Use of data analysis software (diaDEM) for real time notification
Accelerometer Mounted on Milling Machine

Accelerometer

- A device which measures acceleration
- In this case, vibrations caused by the milling machine

Data Sets

- Predetermined specific data sets
 - 0 Missing Teeth - baseline
 - 1 Missing Teeth - simulates broken tooth
 - 2 Missing Teeth - further risk to total system failure
- Others as necessary
The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

Balance

- Project Leader: administration
- Three Sub-Leader:
 - Research- alternatives and other information
 - Data Collection- visit Finkl site for data collections and use of LabView software
 - Data Analysis- knowledge of the physics behind PSD and other analysis possible; use of DIAdem

Adaptability

- Ability to shift members from one group to another depending on work load
IPRO 304: Integration of Process Improvements for A. Finkl and Sons Co.

The Problem
Goals
Organization
The Strategy
Implementation
Current Analysis and Results
Conclusion
Next Steps

FINKL
A. FINKL & SONS CO.
Collect Data

The accelerometer is connected to LabView; a data acquisition program that monitors and records data based on a set of parameters determined by its programmer.
Analyze Data

The data collected in our trials is then sent to DIAdem, a data analysis program that processes and extracts information for use by the team to determine the most distinguishable properties for the detection of insert damage and breakage.
Checks and Balances

It has been determined that the most effective way to reach our goal in such a noise polluted environment is to have a series of several checks so as to avoid false alarms.
Check 1: The Trigger

It is understood that in a typical scenario when an insert fails, it fails catastrophically. This destruction of a carbide insert results in a significant shock to the system that is easily identified by the monitoring program.
Check 2: Pre / Post Trigger Waveform Analysis

Reacting to a trigger the program saves a predetermined amount of data from before and after the event. This data is split into full rotational increments; these increments are then integrated to produce the Power Spectrum Density (PSD) for analysis.
Check 3: Limited Frequency PSD

By zeroing in on specific frequencies we can be more assured that the changes are attributed to the actual milling process rather than fluctuations from the environment or machine.
Unpredictable Testing

A difficulty arises in the implementation testing for such a procedure due to the unpredictable nature of insert breakage.
Trigger Testing

At this time we have ample data to conclude that the trigger threshold will occur above 1.0g.
Pre/Post Trigger analysis and Limited Frequency PSD

Due to the unpredictable nature of insert breakage we must collect data under the scenarios that we know occur after an insert breakage.

0 inserts missing

1 insert missing

2 inserts missing
Pre/Post Trigger analysis and Limited Frequency PSD

After collecting the data under these different scenarios we increment the waveforms into rotational segments.
Pre/Post Trigger analysis and Limited Frequency PSD

We can then focus on the waveform of a single rotation of the milling head.
Pre/Post Trigger analysis and Limited Frequency PSD

The analysis is then applied and a PSD is produced.
Pre/Post Trigger analysis and Limited Frequency PSD

When the PSD from different data sets are compared a power drop is seen as inserts are removed.

0, 1, 2 missing inserts: 50-60Hz – comparison PSD

0 Missing Inserts
1 Missing Inserts
2 Missing Inserts
Pre/Post Trigger analysis and Limited Frequency PSD

As this process is repeated across many sets of data a pattern emerges. From this pattern a threshold can be determined that distinguishes when an inserts is broken or damaged.

```
0,1,2 missing inserts: 50-60Hz - comparison PSD
0.0E+00 2.0E-03 4.0E-03 6.0E-03 8.0E-03 1.0E-02 1.2E-02 1.4E-02
SET 01 SET 02 SET 03 SET 04 SET 05 SET 06 SET 07 SET 08 SET 09 SET 10
Collection Set
PSD sum (g*g)/Hz
0 MISSING INSERTS
1 MISSING INSERT
2 MISSING INSERTS
Threshold
```
Pre/Post Trigger analysis and Limited Frequency PSD

Successful but inconsistent results as a consequence of the data collection method.
Further Testing

Based on the results gathered this semester we recommend:

1. A triaxial accelerometer be used for further data collection.
2. The accelerometer must be permanently affixed to the milling machine.
Further Testing

With a new method of analysis much new data is needed to prove the legitimacy of this discovery. The same idea must be tested on a number of different variables.

Variables to consider

- Milling Machine
- RPM
- Feed Rate
- Cut Depth
- Material Properties
- etc.

Next Steps
The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

Acknowledgments

Chuck Loeppert

Liz Bilitz

Ray DeBooth

Jennifer Keplinger

Dave Snyder

Keith Crawford

Craig and Russ from the IIT mill shop

FINKL®
A. FINKL & SONS CO.