Calibration of the Pitot SteamMeter

A. L. Carr
H. L. Strube

1906

621.18
C 23
Carr, A.L.
Calibration of the Pitot Steam Meter

For Use in Library Only
THE CALIBRATION
OF THE
PITOT STEAM METER
A THESIS
PRESENTED BY
A. L. CARR
&
H. L. STRUBE
TO THE
PRESIDENT AND FACULTY
OF
ARMOUR INSTITUTE OF TECHNOLOGY
FOR THE DEGREE OF
BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING
HAVING COMPLETED THE PRESCRIBED COURSE OF STUDY IN
MECHANICAL ENGINEERING
JUNE 4, 1906.

ILLINOIS INSTITUTE OF TECHNOLOGY
PAUL V. GALVIN LIBRARY
35 WEST 33RD STREET
CHICAGO, IL 60616

Approved

F. S. Champion
Dean of Eng. Studies
Calibration of the Pitot Steam Meter

The object in view in this thesis work was to obtain experimental data for the calibration of a steam meter or instrument for measuring the flow of steam in a pipe. If possible, a scale was to be provided which would give the velocity of steam in feet per minute or the quantity in pounds per hour, so that the instrument might be set up on any size steam pipe and those quantities be observed at a glance. The constant of the pitot tube was to be determined by calculating the ratio of the actual velocity in the pipe to the theoretical velocity.

In order to determine the practicability of the instrument, tests were made on pipes varying in size from one inch to three inches in diameter and with velocities varying from 500 to 10000 feet per minute; also with pressures varying from 60 to 90 pounds gauge.

The principle upon which the instrument is based is that of the well-known Pitot tube. Referring to the accompanying sketch, the Pitot Steam Velocity meter may be described as follows:- The meter consists of two parallel tubes each a little over two feet in length and connected at the extremities by hollow castings. One of the tubes is an ordinary gauge glass which has been surrounded
by a metallic sleeve having graduated upon it a scale divided into inches and tenths of inches up to 25 inches. The other is an ordinary one half inch pipe and is called the pressure tube. The tubes are meant to be mounted vertically in order to give correct readings of the scale. It is seen that a small tube called the Pitot tube extends from the lower opening. It is about $\frac{3}{32}$-inch internal diameter and is meant to project into the pipe so that its end is in the center of the steam pipe. The opening of this tube is made to face at right angles to the flow of steam in the pipe. The other end of the pitot tube is screwed into a diaphragm made into the hollow casting which prevents steam from entering the lower opening of the gauge glass except through the pitot tube itself. This diaphragm is set back far enough in the casting to allow the steam entering the $\frac{1}{2}$ inch pipe and surrounding the pitot tube, to flow up the pressure tube and over into the top of the gauge glass. In flowing up this tube and entering the gauge glass the steam is condensed and gravitates down the glass to form a head of water.

Since the pitot tube allows both pressure and velocity heads to be exerted at the lower opening of the gauge glass while only a pressure head is exerted from above, it is evident that the two pressures will exactly neutralize each other leaving only the velocity head.
not to return. You have our permission to leave.

Please note that you are not bound by this agreement.

This agreement is valid only if signed by both parties.

Please sign below:

[Signature]

Date: [Date]

[Name]

[Title]
This velocity head is then determined from the height of water or condensed steam in the glass, by the well known hydraulic formula \(V = \sqrt{2gh} \) when

\[h = \text{head in feet of steam} \]
\[g = \text{gravity} \]
\[v = \text{velocity in feet per second} \]

This formula is not exactly correct for a gas or a vapor, as steam, but is sufficiently correct for all practical purposes and may be used here. The head in inches of water may easily be converted to feet of steam by multiplying the height by the ratio of the density of water to steam at the given temperature and pressure in the pipe.

The flow of steam through the meter is controlled by means of the angle valves.

The instrument is attached to a pipe by means of a union and 1/2 inch nipple, the latter screwing into a hole tapped into the pipe directly or into a fitting. The end of this nipple is meant to come flush with the internal surface of the steam pipe so as to preclude the possibility of eddy currents, etc, from creating a false pressure. The head of water in the gauge glass is balanced by the velocity head because of the impulse of the moving steam, the latter striking the opening of the pitot tube.
The arrangement of the apparatus is shown in Fig. 2. Steam was allowed to flow through the pipe to be tested and was condensed in a surface condenser; from which it was discharged into weighing tanks. From the known area of the pipe and the known quantity of steam the actual velocity of the steam flowing through the pipe may be obtained. The quantity of steam is obtained from the weight of water by multiplying the latter by the volume of one pound of steam at the known pressure. Thus the actual velocity in feet per minute is equal to --- weight of water per minute \times \text{specific volume of steam at the pressure divided by the area of the pipe in square ft.} The theoretical velocity is obtained approximately from the formula \[V = \sqrt{2gh} \]

The ratio of the actual to the theoretical velocity will give the constant of the tube. It should be unity provided the pressure part of the instrument is designed properly.

Refering to Fig. 2 it is seen that the upper valve controls the pressure of the steam flowing through the pipe to be tested while the lower one controls the velocity. In starting a run both these valves are opened to allow steam to flow through to the condenser. Both the angle valves on the meter itself are previously closed. Then the upper angle valve is opened slightly at first to
The Council of the London County Council hereby do...
allow the gauge glass to gradually become heated. After this valve has been opened wide, the steam is allowed to condense in the open casting and fill the gauge glass.

The lower angle valve is then opened and this condensed steam allowed to adjust itself to the proper head corresponding to the velocity of the steam flowing through the pipe. Runs of five minutes were taken and readings of the instrument made every minute, care being taken to keep the pressure constant. This is essential, as any change in pressure will cause a change in head which will be proportional to the square of the velocity. In most of the later experiments five different velocities were obtained for each pressure in order that five points be obtained for curves to be plotted with meter readings and velocities in feet per minute as coordinates.

The first series of experiments were made on a three-inch pipe. The connecting nipple was in this case screwed into a hole tapped in the pipe. The meter was set at an angle of about 12 1/2 degrees with the horizontal and a run made with constant pressure, but with velocity heads varying the length of the tube. This angle of 12 1/2 degrees gave a maximum vertical head of 6 1/2 inches of water. The object of tipping the instrument at an angle was to obtain readings which would be more sensitive
the Israelites added to their object was the hope that this provision would allow them to gain a foothold in Canaan and establish a foothold against the Canaanites. However, the Israelites were not prepared to fight and were reluctant to engage in this war.
to any change of velocity for low velocities. The range in velocity is not as great as when vertical, but it is enough for all practical purposes. A new instrument in being made with a slant of about 12 degrees which will have a scale reading the actual vertical head of water. Referring to the data obtained (see blue print Apr. 18) it will be seen that the maximum velocity obtained with the instrument at 12 1/2 degrees to the horizontal, was over 5000 feet per minute which is greater than any velocity obtained in practice.

Next a series of runs were made upon a one inch pipe in which the connecting nipple was screwed into the 1/2 inch opening of a 1\times1\times1/2 inch tee. We were unsuccessful in securing reliable results in this case, because the pressure head was evidently affected by the opening to the pressure tube. A considerable cavity is left at the opening to the pressure tube inside the tee which causes the steam to swirl and eddy at this point thereby effecting the readings of the meter by unbalancing the pressure heads. A Special fitting was therefore made which did away with this defect. A number of runs were taken with this fitting and the constant of the pitot tube averaged about 0.794. In figuring this constant all the constants were averaged (for different velocities). It is thought that
those obtained for low velocities were incorrect because they differ from the others by so great an amount. If these are left out the constant will become 0.82.

When attached to a 2-inch pipe the constant of the meter was calculated to average about 0.88. The connecting nipple was screwed into a 1/2-inch hole tapped into the pipe the same as with the 3-inch pipe. The results obtained are believed to be reliable because all conditions were as nearly constant as it was possible to make them. However as in the case of a one inch pipe, the lower velocity readings appear to be unreliable.

With a 2 1/2-inch pipe the nipple attachment was screwed into the 1/2 inch opening of a 2 1/2 X 1/2-inch cross fitting. The same trouble was encountered with this fitting as with the one inch tee, namely, that eddy currents affected the pressure head to such an extent as to spoil the readings of the meter. The constant of the tube figures out to be only 0.54 which is evidently incorrect. These results will not be found with the other data as they are believed to be incorrect.

The 2 1/2-inch pipe carried steam to a cross-compound engine, so the behavior of the instrument, when attached to a pipe through which steam was flowing to a running engine, was observed. The column of condensed steam did not fluctuate any more when the engine was run-
ning than when the steam was being blown through the pipe, thus proving that this instrument may be successfully used to measure the flow of steam in a pipe leading to a running engine or turbine.

Runs were next taken on a 3-inch pipe during which the instrument was kept in a vertical position. It was impossible to get more than a 5-inch head of water because of the large size of pipe requiring a great quantity of steam. However it will be seen that the constant of the tube is nearly unity for the results obtained. The average constant for the 3-inch pipe is 0.95. This quantity was lowered by two runs which were probably incorrect viz., those giving constants of 0.862 and 0.835; with these two results left out the average constant would be 0.98 which is as near unity as the accuracy of experimental work would allow.

It will be noticed that as the size of pipe increased, the size of the constant also increased. Altho' the opening of the pitot tube was at the center of the steam pipe in each case, it is probable that with the smaller size pipes, the swirling of the steam in the pipe effected the readings. Then again it may be due to the pitot tubes themselves since different tubes were used for each size of pipe. Had time permitted we would have
determined the effect of shifting the pitot tube across the diameter of the pipe and found the best position in which to leave the tube while making a run. Therefore it was thought best to place the opening of the tube in the center of the pipe which is not necessarily the mean velocity center or radius. The quality of steam and the pressure also affects the readings of the instrument.

By the time the steam reached the meter in our apparatus it contained considerable moisture, although every means outside of a separator were used to lower the percentage. No determinations of quality were made.

The accompanying curves show the relation between the meter readings and the velocity of steam in feet per minute; also the weights of steam in pounds per hour and meter readings. The best curves were obtained with the 2 inch pipe and show the relation between the actual and the theoretical values of velocity. As previously stated the range in heads is not great enough with the 3 inch pipe to give valuable curves. The results would probably be more nearly correct had the tube been tilted as it was in the first case.

An example of the method of calculating results is shown below;

(From data obtained on June 1)
pressure of steam = 88 pounds absolute
specific volume of steam at 88°F = 4.96 cu. ft.
Temp. of steam at 88°F = 325 degrees F.
weight of one cu. ft. of water at 325 degrees = 56.65
weight of one cu. ft. of steam at 88°F = 0.201
average meter reading for 5 minutes run = 5.5
weight of steam flowing thru pipe in 5 minutes = 249#
area of three inch pipe = 0.0491 sq. ft.

Therefore actual velocity of steam \[\frac{249 \times 4.96}{5 \times 0.0491} = 5030 \text{ ft min.} \]

Theoretical velocity of steam \[V = \sqrt{2gh} \] approximately
\[= 8.025 \times 60 \sqrt{\frac{5.5 \times 56.65}{12 \times 0.201}} = 5470 \text{ ft per minute} \]

Therefore the constant of the pitot tube is \[\frac{5030}{5470} = .921 \]

The results of the tests on this pitot steam meter show that it may be used successfully in practice for the measurement of the flow of steam in a pipe. It was shown that the instrument could be easily and quickly attached to any steam pipe and for high velocities the results obtained were fairly constant. The new instrument which was designed for lower velocities such as those of steam flowing to a running engine, e.g. 2000 feet per min., will undoubtedly give better results for these lower velocities. The head of water for the instrument is very sensitive to any change in pressure or velocity in the steam
pipe and for this reason would be very valuable in prac-
tice, especially for use in tests. An idea of the actual
amount of steam consumed by an engine may be obtained
which might result in greater economy being practiced
by the engineer in charge.

While the tests were necessarily cut short, still
enough data was obtained to give an idea of the practica-
bility of the instrument.

A. L. Carr
H. L. Strube
Pressure Tube

Gauge Glass

Pressure Tube

PITOT STEAM METER
Scale - 3 = 1 ft

Blow-off cock attachment

\(\text{\textfrac{1}{2}"} \) inside diameter

Pitot Tube
<table>
<thead>
<tr>
<th>Time</th>
<th>1" Pipe</th>
<th>1/4" Pipe</th>
<th>1/8" Pipe</th>
<th>1/16" Pipe</th>
<th>1/32" Pipe</th>
<th>1/64" Pipe</th>
<th>Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:16</td>
<td>84</td>
<td>64</td>
<td>524</td>
<td>5730</td>
<td>4560</td>
<td>6300</td>
<td>0.79</td>
</tr>
<tr>
<td>1:18</td>
<td>do</td>
<td>do</td>
<td>do</td>
<td>do</td>
<td>do</td>
<td>do</td>
<td>0.79</td>
</tr>
<tr>
<td>1:20</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:21</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:22</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:23</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:24</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:25</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:26</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:27</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:28</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:29</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:30</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:31</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:32</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:33</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:34</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:35</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:36</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:37</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:38</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:39</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:40</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:41</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:42</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:43</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:44</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>1:45</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.79</td>
</tr>
<tr>
<td>Time</td>
<td>May Pressure</td>
<td>After Readings</td>
<td>Aft. of Water</td>
<td>Actual Velocity</td>
<td>True Velocity</td>
<td>Coefficient</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4:59</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>0.8175</td>
<td></td>
</tr>
<tr>
<td>5:10</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>5:20</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>0.105</td>
<td></td>
</tr>
<tr>
<td>5:30</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>0.095</td>
<td></td>
</tr>
<tr>
<td>5:40</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>0.085</td>
<td></td>
</tr>
<tr>
<td>5:50</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>0.065</td>
<td></td>
</tr>
<tr>
<td>6:10</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td>6:20</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>6:30</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>6:40</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>6:50</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- May 14, 1900
- May 15, 1900
- 1" Pipe
<table>
<thead>
<tr>
<th>Time</th>
<th>Pressure</th>
<th>Meter Reading</th>
<th>Vts. of Water</th>
<th>Actual Vel.</th>
<th>Theo Vel.</th>
<th>Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:23</td>
<td>100.7</td>
<td>9.25</td>
<td></td>
<td>9.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>do</td>
<td>4.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>do</td>
<td>4.4</td>
<td></td>
<td>51.50</td>
<td>60.50</td>
<td>0.775</td>
</tr>
<tr>
<td>26</td>
<td>do</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>do</td>
<td>9.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>do</td>
<td>9.4</td>
<td></td>
<td>988.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10:31	100.7	4.7		988.5		
32	do	4.9				
33	do	4.6		3644	4630	0.788
34	do	4.6				
35	do	4.0				
36	do	4.1		1011.5		

<p>| 10:39 | 100.7 | 1.4 | | 1011.5 | | |
| 40 | do | 1.4 | | | | |
| 41 | do | 1.5 | | 2538 | 2605 | 0.974 |
| 42 | do | 1.4 | | | | |
| 43 | do | 1.4 | | | | |
| 44 | do | 1.4 | | 1027.5 | | |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Pressure</th>
<th>Meter Readings</th>
<th>Wts of Water</th>
<th>Actual Vel</th>
<th>Theorical Vel</th>
<th>Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:09</td>
<td>95.2</td>
<td>11.1</td>
<td>1027.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:10</td>
<td>do</td>
<td>11.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:11</td>
<td>do</td>
<td>11.1</td>
<td></td>
<td>6430</td>
<td>7440</td>
<td>0.865</td>
</tr>
<tr>
<td>11:12</td>
<td>do</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:13</td>
<td>do</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:14</td>
<td>do</td>
<td>11.2</td>
<td></td>
<td>1066</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11:21	95.2	20.6	1066.5			
11:22	do	20.6				
11:23	do	20.6		7940	10110	0.785
11:24	do	20.5				
11:25	do	20.6				
11:26	do	20.6		1114		

<p>| 11:27 | 95.2 | 0.2 | 1114 | | | |
| 11:28 | do | 6.1 | | | | |
| 11:29 | do | 6.15 | | 4510 | 3595 | 0.806 |
| 11:30 | do | 6.15 | | | | |
| 11:31 | do | 6.1 | | | | |
| 11:32 | do | 6.2 | | 1141 | | |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Pressure</th>
<th>Abs. Pressure</th>
<th>Feet of Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:34</td>
<td>114.2</td>
<td>3480</td>
<td>0.816</td>
</tr>
<tr>
<td>11:35</td>
<td>114.1</td>
<td>2840</td>
<td></td>
</tr>
<tr>
<td>11:36</td>
<td>114.2</td>
<td>2.5</td>
<td>1" hose</td>
</tr>
<tr>
<td>11:37</td>
<td>114.1</td>
<td>2.5</td>
<td>1" hose</td>
</tr>
<tr>
<td>11:38</td>
<td>114.1</td>
<td>2.5</td>
<td>1" hose</td>
</tr>
<tr>
<td>11:39</td>
<td>114.2</td>
<td>2.5</td>
<td>1" hose</td>
</tr>
<tr>
<td>1:54</td>
<td>114.2</td>
<td>20.1</td>
<td>55.4</td>
</tr>
<tr>
<td>1:55</td>
<td>114.2</td>
<td>20.5</td>
<td>55.4</td>
</tr>
<tr>
<td>1:56</td>
<td>114.2</td>
<td>20.5</td>
<td>55.4</td>
</tr>
<tr>
<td>1:57</td>
<td>114.2</td>
<td>20.5</td>
<td>55.4</td>
</tr>
<tr>
<td>1:58</td>
<td>114.2</td>
<td>18.6</td>
<td>55.4</td>
</tr>
<tr>
<td>1:59</td>
<td>114.2</td>
<td>18.6</td>
<td>55.4</td>
</tr>
<tr>
<td>2:30</td>
<td>114.2</td>
<td>13.0</td>
<td>628.5</td>
</tr>
<tr>
<td>3:1</td>
<td>114.2</td>
<td>13.0</td>
<td>628.5</td>
</tr>
<tr>
<td>3:2</td>
<td>114.2</td>
<td>12.9</td>
<td>628.5</td>
</tr>
<tr>
<td>3:3</td>
<td>114.2</td>
<td>12.9</td>
<td>628.5</td>
</tr>
<tr>
<td>3:4</td>
<td>114.2</td>
<td>12.9</td>
<td>628.5</td>
</tr>
<tr>
<td>3:5</td>
<td>114.2</td>
<td>12.9</td>
<td>628.5</td>
</tr>
<tr>
<td>Time</td>
<td>Max. Pressure</td>
<td>Meter Reading</td>
<td>Wts. of Water</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>2:36</td>
<td>104.2 do</td>
<td>7.8</td>
<td>6.64.5</td>
</tr>
<tr>
<td>3:14</td>
<td>104.2 do</td>
<td>7.6</td>
<td>6.64.5</td>
</tr>
<tr>
<td>4:00</td>
<td>104.2 do</td>
<td>7.6</td>
<td>6.64.5</td>
</tr>
<tr>
<td>4:44</td>
<td>104.2 do</td>
<td>2.7</td>
<td>6.94.5</td>
</tr>
<tr>
<td>5:16</td>
<td>104.2 do</td>
<td>1.2</td>
<td>7.10.5</td>
</tr>
<tr>
<td>5:45</td>
<td>104.2 do</td>
<td>1.2</td>
<td>7.10.5</td>
</tr>
<tr>
<td>6:00</td>
<td>104.2 do</td>
<td>0.5</td>
<td>7.18.5</td>
</tr>
<tr>
<td>Time</td>
<td>Abs Pressure</td>
<td>Meter Reading</td>
<td>Wts of Water</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>9:43</td>
<td>98.7</td>
<td>23.4</td>
<td>542.5</td>
</tr>
<tr>
<td>44</td>
<td>do</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>do</td>
<td>23.8</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>do</td>
<td>24.2</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>do</td>
<td>24.2</td>
<td></td>
</tr>
<tr>
<td>9:50</td>
<td>98.7</td>
<td>17.3</td>
<td>591</td>
</tr>
<tr>
<td>51</td>
<td>do</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>do</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>do</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>do</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>do</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>9:58</td>
<td>98.7</td>
<td>13.9</td>
<td>633</td>
</tr>
<tr>
<td>54</td>
<td>do</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>10:01</td>
<td>do</td>
<td>13.9</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>do</td>
<td>14.3</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>do</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>do</td>
<td>13.3</td>
<td>671</td>
</tr>
<tr>
<td>Time</td>
<td>Abs Pressure</td>
<td>Meter Reading</td>
<td>Wt's of Water</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>10:25</td>
<td>98.7</td>
<td>5.5</td>
<td>532.5</td>
</tr>
<tr>
<td>26</td>
<td>do</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>do</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>do</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>do</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>97.7</td>
<td>5.5</td>
<td>554.5</td>
</tr>
<tr>
<td>10:38</td>
<td>98.7</td>
<td>1.8</td>
<td>554.5</td>
</tr>
<tr>
<td>39</td>
<td>do</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>do</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>do</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>do</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>do</td>
<td>1.7</td>
<td>562</td>
</tr>
<tr>
<td>11:31</td>
<td>94.7</td>
<td>3.7</td>
<td>531</td>
</tr>
<tr>
<td>32</td>
<td>do</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>do</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>do</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>do</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>do</td>
<td>3.1</td>
<td>553</td>
</tr>
<tr>
<td>Time</td>
<td>Abs. Pressure</td>
<td>Meters Reading</td>
<td>Wt. of Water</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>11:41</td>
<td>94.7</td>
<td>94.7</td>
<td>94.7</td>
</tr>
<tr>
<td>11:42</td>
<td>do</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>11:43</td>
<td>94.7</td>
<td>94.7</td>
<td>94.7</td>
</tr>
<tr>
<td>11:44</td>
<td>do</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>11:45</td>
<td>94.7</td>
<td>94.7</td>
<td>94.7</td>
</tr>
<tr>
<td>11:46</td>
<td>do</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>11:50</td>
<td>94.7</td>
<td>94.7</td>
<td>94.7</td>
</tr>
<tr>
<td>11:51</td>
<td>do</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>11:52</td>
<td>94.7</td>
<td>94.7</td>
<td>94.7</td>
</tr>
<tr>
<td>11:53</td>
<td>do</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>11:54</td>
<td>94.7</td>
<td>94.7</td>
<td>94.7</td>
</tr>
<tr>
<td>11:55</td>
<td>do</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>2:27</td>
<td>94.7</td>
<td>94.7</td>
<td>94.7</td>
</tr>
<tr>
<td>2:28</td>
<td>do</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>2:29</td>
<td>94.7</td>
<td>94.7</td>
<td>94.7</td>
</tr>
<tr>
<td>2:30</td>
<td>do</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>2:31</td>
<td>94.7</td>
<td>94.7</td>
<td>94.7</td>
</tr>
<tr>
<td>2:32</td>
<td>do</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Time</td>
<td>Abs Pressure</td>
<td>Water Meter Readings</td>
<td>Nlts of Water</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>2:43</td>
<td>94.7</td>
<td>23.8</td>
<td>6.24</td>
</tr>
<tr>
<td>4.4</td>
<td>da</td>
<td>24.0</td>
<td>da</td>
</tr>
<tr>
<td>4.5</td>
<td>da</td>
<td>24.0</td>
<td>da</td>
</tr>
<tr>
<td>4.6</td>
<td>da</td>
<td>23.9</td>
<td>da</td>
</tr>
<tr>
<td>4.7</td>
<td>89.7</td>
<td>22.1</td>
<td>5.5</td>
</tr>
<tr>
<td>4.8</td>
<td>89.7</td>
<td>21.4</td>
<td>5.755</td>
</tr>
<tr>
<td>3.03</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>3.04</td>
<td>89.7</td>
<td>21.3</td>
<td>15.5</td>
</tr>
<tr>
<td>3.05</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>3.06</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>3.07</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>3.08</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>Time</td>
<td>May 22. (cont’d)</td>
<td>M. Pressure</td>
<td>Meter Reading</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>3:16</td>
<td>89.7</td>
<td>9.7</td>
<td>9.9</td>
</tr>
<tr>
<td>17</td>
<td>do</td>
<td>do</td>
<td>10.0</td>
</tr>
<tr>
<td>18</td>
<td>do</td>
<td>do</td>
<td>9.9</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>10.1</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>29</td>
<td>5.7</td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td>32</td>
<td>5.5</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>35</td>
<td>89.7</td>
</tr>
<tr>
<td>36</td>
<td>37</td>
<td>38</td>
<td>89.7</td>
</tr>
<tr>
<td>39</td>
<td>40</td>
<td>41</td>
<td>3.35</td>
</tr>
</tbody>
</table>
| Time | Abs. Pressure | Water Head | Win. of Water | Actual Vel. | Then Vel. | Constant
|-------|--------------|------------|---------------|-------------|-----------|-----------
<p>| 3:42 | 84.7 | 1.2 | 1.2 | 57.4 | 2.68 | 0.984 |
| 4:3 | do | 1.1 | 1.2 | 58.8 | 2.637 | |
| 4:45 | do | 1.2 | 1.4 | 58.8 | 5.080 | 0.865 |
| 4:46 | do | 1.2 | 1.4 | 58.8 | 5.080 | 0.865 |
| 4:47 | do | 1.3 | 1.4 | 58.8 | 5.080 | 0.865 |
| 3:53 | 84.7 | 1.2 | 1.2 | 58.8 | 5.080 | 0.865 |
| 3:54 | 84.7 | 1.2 | 1.2 | 58.8 | 5.080 | 0.865 |
| 3:55 | 84.7 | 1.2 | 1.2 | 58.8 | 5.080 | 0.865 |
| 3:56 | 84.7 | 1.2 | 1.2 | 58.8 | 5.080 | 0.865 |
| 3:57 | 84.7 | 1.2 | 1.2 | 58.8 | 5.080 | 0.865 |
| 3:58 | 84.7 | 1.2 | 1.2 | 58.8 | 5.080 | 0.865 |
| 4:01 | 84.7 | 1.2 | 1.2 | 58.8 | 5.080 | 0.865 |
| 4:02 | 84.7 | 1.2 | 1.2 | 58.8 | 5.080 | 0.865 |
| 4:03 | 84.7 | 1.2 | 1.2 | 58.8 | 5.080 | 0.865 |
| 4:04 | 84.7 | 1.2 | 1.2 | 58.8 | 5.080 | 0.865 |
| 4:05 | 84.7 | 1.2 | 1.2 | 58.8 | 5.080 | 0.865 |
| 4:06 | 84.7 | 1.2 | 1.2 | 58.8 | 5.080 | 0.865 |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Abs. Pressure Meter Readings</th>
<th>Abs. of Water Actual Vel</th>
<th>Theo. Vel</th>
<th>Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:10</td>
<td>84.7</td>
<td>16.9</td>
<td>8.850</td>
<td>0.896</td>
</tr>
<tr>
<td>11</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>12</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>13</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>14</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>15</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>4:20</td>
<td>84.7</td>
<td>23.7</td>
<td>97.00</td>
<td>0.837</td>
</tr>
<tr>
<td>21</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>22</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>23</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>24</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>25</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>Time</td>
<td>Abs Pressure</td>
<td>M.P.R.</td>
<td>Reading</td>
<td>M.P. of Water</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>--------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>1:25</td>
<td>103.2</td>
<td>do</td>
<td>19.9</td>
<td>52.3.5</td>
</tr>
<tr>
<td></td>
<td>do</td>
<td>do</td>
<td>19.0</td>
<td>18.4</td>
</tr>
<tr>
<td></td>
<td>do</td>
<td>do</td>
<td>28.9</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>do</td>
<td>do</td>
<td>30.0</td>
<td>16.6</td>
</tr>
<tr>
<td>1:35</td>
<td>102.2</td>
<td>do</td>
<td>36.0</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>do</td>
<td>do</td>
<td>37.0</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td>do</td>
<td>do</td>
<td>38.0</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td>do</td>
<td>do</td>
<td>39.0</td>
<td>19.8</td>
</tr>
<tr>
<td>1:45</td>
<td>103.2</td>
<td>do</td>
<td>40.0</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>do</td>
<td>do</td>
<td>41.0</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>do</td>
<td>do</td>
<td>42.0</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>do</td>
<td>do</td>
<td>43.0</td>
<td>19.4</td>
</tr>
<tr>
<td>1:55</td>
<td>104.3</td>
<td>do</td>
<td>44.0</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>do</td>
<td>do</td>
<td>45.0</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>do</td>
<td>do</td>
<td>46.0</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>do</td>
<td>do</td>
<td>47.0</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>do</td>
<td>do</td>
<td>48.0</td>
<td>19.4</td>
</tr>
<tr>
<td>Time (min)</td>
<td>Manometer Reading</td>
<td>Water Column, in.</td>
<td>Actual Vel., f.p.s.</td>
<td>Theoretical Vel., f.p.s.</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>1:50</td>
<td>103.2</td>
<td>5.1</td>
<td>0.862</td>
<td>4.855</td>
</tr>
<tr>
<td>1:51</td>
<td>103.2</td>
<td>5.1</td>
<td>4.190</td>
<td></td>
</tr>
<tr>
<td>1:52</td>
<td>103.2</td>
<td>5.1</td>
<td>11.81.5</td>
<td></td>
</tr>
<tr>
<td>1:53</td>
<td>103.2</td>
<td>5.1</td>
<td>5.45</td>
<td></td>
</tr>
<tr>
<td>1:54</td>
<td>103.2</td>
<td>5.1</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>1:55</td>
<td>103.2</td>
<td>5.1</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>1:56</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>1:57</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>1:58</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>1:59</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:01</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:02</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:03</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:04</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:05</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:06</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:07</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:08</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:09</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:10</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:11</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:12</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:13</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:14</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:15</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:16</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:17</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:18</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>2:19</td>
<td>103.2</td>
<td>5.1</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Abs. Pressure</td>
<td>Meter Readings</td>
<td>Vel. of Water</td>
<td>Actual Vel.</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>2:24</td>
<td>97.7</td>
<td>5.0</td>
<td>6.5</td>
<td>3.5</td>
</tr>
<tr>
<td>2:26</td>
<td>do</td>
<td>5.1</td>
<td>5.15</td>
<td>5.15</td>
</tr>
<tr>
<td>2:27</td>
<td>do</td>
<td>5.15</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>2:28</td>
<td>do</td>
<td>5.1</td>
<td>764.5</td>
<td>764.5</td>
</tr>
<tr>
<td>2:29</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:30</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:31</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:32</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:33</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:34</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:35</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:36</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:37</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:38</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:39</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:40</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:41</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:42</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:43</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:44</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:45</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:46</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:47</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:48</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:49</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:50</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:51</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:52</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:53</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:54</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:55</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:56</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:57</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:58</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>2:59</td>
<td>do</td>
<td>789.5</td>
<td>789.5</td>
<td>789.5</td>
</tr>
<tr>
<td>Time</td>
<td>May 25 (cont)</td>
<td>Abs. Pressure</td>
<td>Meter Reading</td>
<td>Wt. of Water</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>3:07</td>
<td>9.32</td>
<td>08</td>
<td>15.5</td>
<td>7680</td>
</tr>
<tr>
<td>10:00</td>
<td>9.45</td>
<td>09</td>
<td>15.4</td>
<td>719.5</td>
</tr>
<tr>
<td>12:14</td>
<td>9.65</td>
<td>11:01</td>
<td>15.5</td>
<td>719.5</td>
</tr>
<tr>
<td>15:18</td>
<td>9.6</td>
<td>16:17</td>
<td>15.5</td>
<td>863.5</td>
</tr>
<tr>
<td>19:22</td>
<td>9.5</td>
<td>23:24</td>
<td>15.5</td>
<td>96.3</td>
</tr>
<tr>
<td>Time</td>
<td>Air Pressure</td>
<td>Meter Reading, Mls. of Water</td>
<td>Actual Vel.</td>
<td>Theo. Vel.</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>3:27</td>
<td>93.2</td>
<td>1.25</td>
<td>1.5</td>
<td>2.540</td>
</tr>
<tr>
<td>3:28</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>3:29</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>3:30</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>3:31</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>3:32</td>
<td>da</td>
<td>da</td>
<td>da</td>
<td>da</td>
</tr>
<tr>
<td>3:33</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:34</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:35</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:36</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:37</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:38</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:39</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:40</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:41</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:42</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:43</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:44</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:45</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:46</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:47</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:48</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:49</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:50</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:51</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:52</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>3:53</td>
<td>88.2</td>
<td>0.45</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>Time</td>
<td>May 25 (Central)</td>
<td>Abs Pressure</td>
<td>Meter Reading</td>
<td>Water Actual Vel</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td>3:59</td>
<td>88.2</td>
<td>9.9</td>
<td>0.3</td>
<td>681.5</td>
</tr>
<tr>
<td>4:00</td>
<td>88.3</td>
<td>9.9</td>
<td>0.3</td>
<td>681.5</td>
</tr>
<tr>
<td>4:01</td>
<td>88.5</td>
<td>9.9</td>
<td>0.3</td>
<td>681.5</td>
</tr>
<tr>
<td>4:02</td>
<td>88.5</td>
<td>9.9</td>
<td>0.3</td>
<td>681.5</td>
</tr>
<tr>
<td>4:03</td>
<td>88.5</td>
<td>9.9</td>
<td>0.3</td>
<td>681.5</td>
</tr>
<tr>
<td>4:04</td>
<td>88.5</td>
<td>9.9</td>
<td>0.3</td>
<td>681.5</td>
</tr>
<tr>
<td>4:11</td>
<td>88.2</td>
<td>9.9</td>
<td>0.3</td>
<td>681.5</td>
</tr>
<tr>
<td>4:12</td>
<td>88.2</td>
<td>9.9</td>
<td>0.3</td>
<td>681.5</td>
</tr>
<tr>
<td>4:13</td>
<td>88.2</td>
<td>9.9</td>
<td>0.3</td>
<td>681.5</td>
</tr>
<tr>
<td>4:15</td>
<td>88.2</td>
<td>9.9</td>
<td>0.3</td>
<td>681.5</td>
</tr>
<tr>
<td>4:16</td>
<td>88.2</td>
<td>9.9</td>
<td>0.3</td>
<td>681.5</td>
</tr>
<tr>
<td>4:20</td>
<td>88.3</td>
<td>9.9</td>
<td>0.3</td>
<td>681.5</td>
</tr>
<tr>
<td>4:25</td>
<td>88.3</td>
<td>9.9</td>
<td>0.3</td>
<td>681.5</td>
</tr>
<tr>
<td>4:30</td>
<td>88.3</td>
<td>9.9</td>
<td>0.3</td>
<td>681.5</td>
</tr>
<tr>
<td>Time</td>
<td>Abs. Pressure</td>
<td>Meter Reading</td>
<td>Wts. of Water</td>
<td>Actual Vel</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>4:35</td>
<td>83.2</td>
<td>9.3</td>
<td>1043.5</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>9.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>9.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>9.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>9.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>9.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1181</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:43</td>
<td>83.2</td>
<td>5.0</td>
<td>743</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4890</td>
<td>5410</td>
<td>0.904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>5.1</td>
<td></td>
<td>845</td>
<td></td>
</tr>
<tr>
<td>4:50</td>
<td>83.2</td>
<td>1.45</td>
<td>845</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>1.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1.85</td>
<td></td>
<td>908.5</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15</td>
<td>4.9</td>
<td>4.8</td>
<td>37.30</td>
<td>44.70</td>
</tr>
<tr>
<td></td>
<td>5.58</td>
<td></td>
<td>0.835</td>
<td>1.07</td>
</tr>
<tr>
<td>10:42</td>
<td>4.4</td>
<td>4.5</td>
<td>4.0</td>
<td>7.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
<td>3.4</td>
</tr>
<tr>
<td>10:50</td>
<td>4.4</td>
<td>4.4</td>
<td>2.0</td>
<td>2.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.95</td>
<td>2.0</td>
</tr>
<tr>
<td>10:56</td>
<td>5.1</td>
<td>5.1</td>
<td>4.0</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
<td>4.6</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>10:57</td>
<td>3.4</td>
<td>3.5</td>
<td>3.9</td>
<td>3.1</td>
</tr>
<tr>
<td>11:00</td>
<td>5.9</td>
<td>3.5</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td>11:10</td>
<td>1.4</td>
<td>3.91</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>11:23</td>
<td>9.7</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Time</td>
<td>Abs. Pressure</td>
<td>Meter Reading</td>
<td>Wts. of Water</td>
<td>Actual Vel.</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1:33</td>
<td>88</td>
<td>5.2</td>
<td>5.30</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>do</td>
<td>5.5</td>
<td></td>
<td>5300</td>
</tr>
<tr>
<td>35</td>
<td>do</td>
<td>5.7</td>
<td></td>
<td>5300</td>
</tr>
<tr>
<td>36</td>
<td>do</td>
<td>5.6</td>
<td></td>
<td>5300</td>
</tr>
<tr>
<td>37</td>
<td>do</td>
<td>5.4</td>
<td></td>
<td>5300</td>
</tr>
<tr>
<td>38</td>
<td>do</td>
<td>5.6</td>
<td></td>
<td>5300</td>
</tr>
<tr>
<td>1:40</td>
<td>88</td>
<td>4.5</td>
<td>779</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>do</td>
<td>4.8</td>
<td></td>
<td>4660</td>
</tr>
<tr>
<td>42</td>
<td>do</td>
<td>4.6</td>
<td></td>
<td>4660</td>
</tr>
<tr>
<td>43</td>
<td>do</td>
<td>4.2</td>
<td></td>
<td>4660</td>
</tr>
<tr>
<td>44</td>
<td>do</td>
<td>4.1</td>
<td></td>
<td>4660</td>
</tr>
<tr>
<td>45</td>
<td>do</td>
<td>4.2</td>
<td></td>
<td>4660</td>
</tr>
<tr>
<td>1:50</td>
<td>88</td>
<td>2.9</td>
<td>5.54.5</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>do</td>
<td>2.7</td>
<td></td>
<td>3800</td>
</tr>
<tr>
<td>52</td>
<td>do</td>
<td>2.7</td>
<td></td>
<td>3800</td>
</tr>
<tr>
<td>53</td>
<td>do</td>
<td>2.8</td>
<td></td>
<td>3800</td>
</tr>
<tr>
<td>54</td>
<td>do</td>
<td>2.8</td>
<td></td>
<td>3800</td>
</tr>
<tr>
<td>55</td>
<td>do</td>
<td>2.7</td>
<td>742.5</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Abs Pressure</td>
<td>Meter Readings</td>
<td>Wts. of Water</td>
<td>Actual Vel</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>12:00</td>
<td>88</td>
<td>1.7</td>
<td>742.5</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>do</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>do</td>
<td>1.8</td>
<td></td>
<td>3070</td>
</tr>
<tr>
<td>03</td>
<td>do</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>do</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>do</td>
<td>2.0</td>
<td>894.5</td>
<td></td>
</tr>
</tbody>
</table>

Average Constants

- 1" Pipe: 0.80
- 2" Pipe: 0.88
- 3" Pipe: 0.95
1-inch Pipe

Curves showing weights of water in the per
from beginning of water to point of readings in the pipe
May 25, 1900.